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Introduction

Problem studied:

@ scheduling DAG

@ heterogeneous systems

@ hardware can fail
Bi-criteria objective:

@ given a makespan objective

@ optimize reliability
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Related work

A " new subject’ :

@ Dogan & Ozgliner 2002: Model the problem, RDLS bi-criteria
heuristic.

@ Dogan & Ozgiiner 2004: enhancement of previous result (GA).
@ Qin & Jiang 2005: first optimize deadline, then maximize reliability.

@ Hakem & Butelle 2006: BSA, bi-criteria heuristic that outperforms
RDLS.
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e G=(V,E): a DAG.

@ v; € V is associated a number of operations: o;.

e n=1V|

e ¢ = (i,j) € E is associated /; the time to send data from task v; to
task v; (if they are not executed on the processor).

@ a set P of m processors

@ processor p; € P is associated with two values:
o 7 the time to perform one operation and
o J; the failure rate.

v; executed on p; will last o; x ;.
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G =(V,E): a DAG.

v; € V is associated a number of operations: o;.

n=|V|

e; = (i,j) € E is associated /; the time to send data from task v; to
task v; (if they are not executed on the processor).

@ a set P of m processors

@ processor p; € P is associated with two values:

o 7 the time to perform one operation and
o J; the failure rate.

@ v; executed on p; will last o; x 7;.

Assumption:
@ During the execution of the DAG, the failure rate is constant.
= failure model follows an exponential law.
= probability that v; finishes (correctly) its execution:

efo,'><Tj></\j
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Outline

© The problem

E. Jeannot (INRIA/ Reliability Scheduling



Scheduling problem

Allocate tasks to processors such that:
@ two tasks cannot be allocated to the same processor at the same time,
@ dependencies are respected.
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Cj: termination date of processor j

Two criteria to optimize:

@ Makespan: minimize
M = max((;)

o Reliability: maximize

m
pSUCC — H e_q)‘j — e_ erll C:/'AJ'
j=1

or minimize

> G
j=1
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Two unrelated criteria

Proposition

Let S be a schedule where all the tasks have been assigned, in topological
order, to the processor i such that \;j7; is minimum. Then any schedule

S’ is such that pl,.. < Psucc-

E. Jeannot (INRIA/ICL) Reliability Scheduling



Two unrelated criteria

Proposition

Let S be a schedule where all the tasks have been assigned, in topological
order, to the processor i such that \;j7; is minimum. Then any schedule
S’ is such that pl,.. < Psucc-

Proof
@ swlogi=1(ie,Vji: i <7\).

® psucc = e M, plycc = e~ G,

@ T =TyU...U Tpy, sets of the tasks allocated to processors 2,...,m by S’.
e (/> Cl_TlEveTOf
ev2<j<m C>7)

veT
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Two unrelated criteria

Proposition

Let S be a schedule where all the tasks have been assigned, in topological
order, to the processor i such that \;j7; is minimum. Then any schedule
S’ is such that pl,.. < Psucc-

Proof
@ swlogi=1(ie,Vji: i <7\).

® psucc = e M, plycc = e~ G,

@ T =TyU...U Tpy, sets of the tasks allocated to processors 2,...,m by S’.
e (/> Cl_TlEveTOf
ev2<j<m ( >TJZVET

ZCA—ClAl > Z (A —mA) Yo | >0

V,ET

Psucc —e RN PYEaPY] >1

Psucc

E. Jeannot (INRIA/ICL) Reliability Scheduling



Bi-criteria scheduling

Objective: maximizing the reliability subject to the condition that the
makespan is minimized.

@ Finding the optimal makespan, is most of the time NP-hard,
@ we aim at designing an («, (3)-approximation algorithm.
e («, [3)-approximation algorithm:

e makespan at most « times larger than the optimal one,

e probability of failure is at most (3 times larger than the optimal one
(among the schedules that minimize the makespan).
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Approximation algorithm and probability

Let psucc (resp. prail) be the probability of success (resp. of failure) of a

schedule S.
Let Psucc (resp. Prail) be the optimal probability of success (resp. of

failure) for the same input as S.
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Approximation algorithm and probability

Let psucc (resp. prail) be the probability of success (resp. of failure) of a

schedule S.
Let Psucc (resp. Prail) be the optimal probability of success (resp. of

failure) for the same input as S.

B =5, Prail = 0.3 = prail < B+ Prait = 5 x 0.3 = 1.5!
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Approximation algorithm and probability

Let psucc (resp. prail) be the probability of success (resp. of failure) of a
schedule S.

Let Psucc (resp. Prail) be the optimal probability of success (resp. of
failure) for the same input as S.

B =5, Prail = 0.3 = prail < B+ Prait = 5 x 0.3 = 1.5!

Proposition

Psucc Z ﬁsﬁucc = Pail S ﬁ : ﬁfai/
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Approximation algorithm and probability

Let psucc (resp. prail) be the probability of success (resp. of failure) of a
schedule S.

Let Psucc (resp. Prail) be the optimal probability of success (resp. of
failure) for the same input as S.

B =5, Prail = 0.3 = prail < B+ Prait = 5 x 0.3 = 1.5!

Proposition

Psucc Z f)sﬁucc = Pail S ﬁ : ﬁfai/

Proof The proof is based on the Taylor's series of (1 — x)", where,
Vx € [0,1],¥n € [1,+o0[, (1 — x)" < 1 — nx.

Prail = 1= psucc <1 —pBcc=1—(1— pran)’
< 1—(1—8"Pri) =B - Prail
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© Independent unitary tasks
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Independent unitary tasks

oj=land E=0,n=|V|.
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Independent unitary tasks

oj=1land E=0, n=|V|.
Algorithm 1 Makespan-optimal allocation for independent unitary tasks
for i=1to P
1/7

nj <« [Zl/T;J X n
while > n; < n

k = argmin(7k(ng + 1))

ng < ni+1
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Independent unitary tasks

oj=1land E=0, n=|V|.
Algorithm 1 Makespan-optimal allocation for independent unitary tasks
for i=1to P

nj «— [gé;iTiJ X n

while > n; < n
k = argmin(7k(ng + 1))
ng < ni+1

Above algorithm gives M, the best achievable makespan.

For the reliability criteria the user gives the value of « that tells how far
from the optimal makespan he/she can tolerate to be.

Then we compute a schedule such that:

o M < O[Mopt
@ it has the best reliability among all the schedules with makespan < M.
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Optimal algorithm for Independent unitary tasks

Algorithm 2 Optimal reliable allocation for independent unitary tasks
Input: o € [1,400[
Compute M = oMy using previous algorithm
Sort the processor by increasing A\;7;
X «—0
for i=1to P
if X <N
n; < min <N—X7 {TM,J)
else
n; < 0

X<—X+n,~
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Proof of optimality of the reliability

We need to show that Z,-E[l Pl m ;T is minimum.
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Proof of optimality of the reliability

We need to show that Z,-E[l Pl m ;T is minimum.
@ First let us remark that the algorithm fills the processor of task in the
increasing order of \;7;.
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Proof of optimality of the reliability

We need to show that Zie[l,P] m ;T is minimum.
@ First let us remark that the algorithm fills the processor of task in the
increasing order of \;7;.
= any other valid allocation {nf, ..., n}} is such that n} < n; and
n; > n; for any i < j.
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Proof of optimality of the reliability

We need to show that Zie[l,P] m ;T is minimum.
@ First let us remark that the algorithm fills the processor of task in the
increasing order of \;7;.
= any other valid allocation {nf, ..., n}} is such that n} < n; and
n; > n; for any i < j.
o w.lo.g. let ny =ni —k, n; = n;+ k and n} = n; for k € [L,n], j # 1
and j # i.
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Proof of optimality of the reliability

We need to show that Zie[l,P] m ;T is minimum.

@ First let us remark that the algorithm fills the processor of task in the

increasing order of \;7;.
= any other valid allocation {nf, ..., n}} is such that n} < n; and

n; > n; for any i < j.

o w.lo.g. let ny =ni —k, n; = n;+ k and n} = n; for k € [L,n], j # 1
and j # i.

@ Then the difference between the two objective values is:
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Proof of optimality of the reliability

We need to show that Zie[l,P] m ;T is minimum.

@ First let us remark that the algorithm fills the processor of task in the

increasing order of \;7;.
= any other valid allocation {nf, ..., n}} is such that n} < n; and

n; > n; for any i < j.

o w.lo.g. let ny =ni —k, n; = n;+ k and n} = n; for k € [L,n], j # 1
and j # i.

@ Then the difference between the two objective values is:

X = nl)\lﬁ+..,+n;/\;T;+...+nN)\NTN—ni)\lﬁ—...—n,’-)\,-T,-—...—i—n;V)\NTN
= Aimi(m — ni) + Nimi(ni — nf)
= kM1 — k)\iTi
= k(M1 — AiTi)

< 0 because \i7; > A\i71.

Hence, the first allocation has a smaller objective value.
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@ Independent tasks
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Independent tasks: the makespan problem

E=0
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Independent tasks: the makespan problem

E=10
Makespan problem related to the 1-D bin-packing problem with variable
bin size.

E. Jeannot (INRIA/ICL) Reliability Scheduling



Independent tasks: the makespan problem

E=10
Makespan problem related to the 1-D bin-packing problem with variable
bin size. Mond 72
Mcp(/fw”
= - = Mgl
P, P, PR, Pn
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Independent tasks: the makespan problem

E=10
Makespan problem related to the 1-D bin-packing problem with variable
bin size. Mond 72
Mcp(/fw”
: Mt
P, P, PR, Pn
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Independent tasks: the makespan problem

Gonzalez, Ibarra, Sahni 1977:

<2

Yty = <

Mopt > 2 = My pT 2m
Mopt m -+ ]_

n>m

LPT: Least Processing Time scheduling heuristic.
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Independent tasks: bound on the reliability

® Mipt <2 Mopt
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Independent tasks: bound on the reliability

® Mipt <2 Mopt
® Dsucc = e_EAIMOPt
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Independent tasks: bound on the reliability

® Mipt <2 Mopt
® Dsucc = e_EAIMOPt

° pSIJCC 2 e_ZAIMLPT > e_22)\’M0pt > ﬁS2UCC
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Independent tasks: bound on the reliability

® Mipt <2 Mopt
~ > AiM,
@ Psucc = € 2 opt
® Psucc = e_ZAiMLPT > e_2EAiM0pt > f)szucc

= Prail < 2+ Prail
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Can we do better?

@ We have proven that LPT is (2,2)-approximation algorithm (for
n > m).
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Can we do better?

@ We have proven that LPT is (2,2)-approximation algorithm (for
n > m).

@ Can we help the user in choosing a better trade-off?
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Can we do better?

@ We have proven that LPT is (2,2)-approximation algorithm (for
n > m).

@ Can we help the user in choosing a better trade-off?

@ ldea: limit the number of usable processors.
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Can we do better?

@ We have proven that LPT is (2,2)-approximation algorithm (for
n > m).

@ Can we help the user in choosing a better trade-off?
@ ldea: limit the number of usable processors.

@ Which processors to choose?
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Can we do better?

@ We have proven that LPT is (2,2)-approximation algorithm (for
n > m).

@ Can we help the user in choosing a better trade-off?

@ ldea: limit the number of usable processors.

@ Which processors to choose?

@ The ones with the smallest A7.
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Can we do better?

We have proven that LPT is (2,2)-approximation algorithm (for
n > m).

Can we help the user in choosing a better trade-off?

Idea: limit the number of usable processors.

Which processors to choose?

The ones with the smallest A7.

Why?
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Makespan /reliability Trade-off

Recall: scheduling all the tasks on the processors i such that
i = argmin(7;\;) leads to the best possible reliability.
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Makespan /reliability Trade-off

Recall: scheduling all the tasks on the processors i such that
i = argmin(7;\;) leads to the best possible reliability.

Generalization :

Proposition

The best possible reliability among all the schedule with makespan at most
M is achieved when:
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Makespan /reliability Trade-off

Recall: scheduling all the tasks on the processors i such that
i = argmin(7;\;) leads to the best possible reliability.

Generalization :

Proposition

The best possible reliability among all the schedule with makespan at most
M is achieved when:

@ tasks are mapped to m processors in increasing order of \;j,
@ the m — 1 first processors execute tasks up to the date M (C; = M),

© the M processor executes the remaining tasks (Cs < M).
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Makespan /reliability Trade-off

Recall: scheduling all the tasks on the processors i such that
i = argmin(7;\;) leads to the best possible reliability.

Generalization :

Proposition

The best possible reliability among all the schedule with makespan at most
M is achieved when:

@ tasks are mapped to m processors in increasing order of \;j,
@ the m — 1 first processors execute tasks up to the date M (C; = M),

© the M processor executes the remaining tasks (Cs < M).

Remark: such a schedule is not always feasible (it just gives a lower
bound).
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© General Case
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Generalizing Scheduling Heuristics: the HEFT case

e HEFT (Heterogenous Earlisest Finish Time) to RHEFT (Reliable
Heterogeneous Earlisest Finish Time).
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Generalizing Scheduling Heuristics: the HEFT case

e HEFT (Heterogenous Earlisest Finish Time) to RHEFT (Reliable
Heterogeneous Earlisest Finish Time).

@ HEFT: at each step of the heuristic map the task that finishes the
earliest to this processors.

E. Jeannot (INRIA/ICL) Reliability Scheduling



Generalizing Scheduling Heuristics: the HEFT case

e HEFT (Heterogenous Earlisest Finish Time) to RHEFT (Reliable
Heterogeneous Earlisest Finish Time).

@ HEFT: at each step of the heuristic map the task that finishes the
earliest to this processors.

@ RHEFT: select the task that Teng; X A;j is minimum.
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Generalizing Scheduling Heuristics: the HEFT case

e HEFT (Heterogenous Earlisest Finish Time) to RHEFT (Reliable
Heterogeneous Earlisest Finish Time).

@ HEFT: at each step of the heuristic map the task that finishes the
earliest to this processors.

@ RHEFT: select the task that Teng; X A;j is minimum.

A=1, 1,72 5 0=2
b 1 i
n=2, T, =1
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Generalizing Scheduling Heuristics: the HEFT case

e HEFT (Heterogenous Earlisest Finish Time) to RHEFT (Reliable
Heterogeneous Earlisest Finish Time).

@ HEFT: at each step of the heuristic map the task that finishes the
earliest to this processors.

@ RHEFT: select the task that Teng; X A;j is minimum.

A=1, 1,72 5 0=2
b 1 i
n=2, T, =1

° Tendl =0, Tendl X A1 =12
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Generalizing Scheduling Heuristics: the HEFT case

e HEFT (Heterogenous Earlisest Finish Time) to RHEFT (Reliable
Heterogeneous Earlisest Finish Time).

@ HEFT: at each step of the heuristic map the task that finishes the
earliest to this processors.

@ RHEFT: select the task that Teng; X A;j is minimum.

A=1, 1,72 5 0=2
b 1 i
n=2, T, =1

° Tendl =0, Tendl X A1 =12
° Tend2 =09, Tend2 X )\2 =9
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Generalizing Scheduling Heuristics: the HEFT case

e HEFT (Heterogenous Earlisest Finish Time) to RHEFT (Reliable
Heterogeneous Earlisest Finish Time).

@ HEFT: at each step of the heuristic map the task that finishes the
earliest to this processors.

@ RHEFT: select the task that Teng; X A;j is minimum.

A=1, 1,72 5 0=2
b 1 i
n=2, T, =1

° Tendl =0, Tendl X A1 =12
° Tend2 =09, Tend2 X )\2 =9

Easy to extend to other heuristics (sufferage, etc.).
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Reliability /Makespan Trade-off

Two ways top find a good trade-off:
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Reliability /Makespan Trade-off

Two ways top find a good trade-off:

@ Choose a subset of processors; Q: which order?
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Reliability /Makespan Trade-off

Two ways top find a good trade-off:
@ Choose a subset of processors; Q: which order?

@ Use a trade-off variable o (v = 1 switch to HEFT, o = 0 switch to
RHEFT).
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ring the processors: most reliable first

Makespan vs reliability

' ' ' ' ' ' mlakespan —
reliability ==-x---

Makespan
Reliability

10 20 30 40 50 60 70 80 90 100
Nb procs
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ring the processors:

Makespan vs reliability

' ' ' ' ' ' mlakespan —
reliability ==-x---

Makespan
Reliability

10 20 30 40 50 60 70 80 90 100
Nb procs
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ring the processors: smallest A7 first

Makespan vs reliability

' ' ' ' ' ' mlakespan —
reliability ==-x---

Makespan
Reliability

10 20 30 40 50 60 70 80 90 100
Nb procs
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Trade-off variable

Makespan vs reliability

Makespan

10

mi’:\kespan —
reliability ==-x---
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alpha

Reliability Scheduling

0.8
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Conclusion

We have studied the problem of scheduling DAGs, with 2 objectives:
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Conclusion

We have studied the problem of scheduling DAGs, with 2 objectives:

@ minimize makespan
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Conclusion

We have studied the problem of scheduling DAGs, with 2 objectives:
@ minimize makespan

@ maximize reliability
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Conclusion

We have studied the problem of scheduling DAGs, with 2 objectives:
@ minimize makespan

@ maximize reliability

Contribution:
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Conclusion
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@ minimize makespan

@ maximize reliability

Contribution:

@ optimal algorithms for unitary independent tasks,
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Conclusion

We have studied the problem of scheduling DAGs, with 2 objectives:
@ minimize makespan

@ maximize reliability

Contribution:

@ optimal algorithms for unitary independent tasks,

@ approximation algorithm for independent tasks (n > m),
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Conclusion

We have studied the problem of scheduling DAGs, with 2 objectives:
@ minimize makespan

@ maximize reliability

Contribution:
@ optimal algorithms for unitary independent tasks,
@ approximation algorithm for independent tasks (n > m),

@ simple way to generalize heuristics to this context,
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Conclusion

We have studied the problem of scheduling DAGs, with 2 objectives:
@ minimize makespan

@ maximize reliability

Contribution:
@ optimal algorithms for unitary independent tasks,
@ approximation algorithm for independent tasks (n > m),
@ simple way to generalize heuristics to this context,
o

characterization of the role of the A7 value.
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