
Bi-objective Scheduling Algorithms for Optimizing
Makespan and Reliability on Heterogeneous Systems

Jack J. Dongarra, Emmanuel Jeannot and Zhiao Shi

INRIA & Innovative Computing Laboratory
dongarra@cs.utk.edu, ejeannot@loria.fr, shi@cs.utk.edu

E. Jeannot (INRIA/ICL) Reliability Scheduling 1 / 30

Outline of the talk

1 Introduction, related work and modeling

2 The problem

3 Independent unitary tasks

4 Independent tasks

5 General Case

6 Conclusion

E. Jeannot (INRIA/ICL) Reliability Scheduling 2 / 30

Introduction

Problem studied:

scheduling DAG

heterogeneous systems

hardware can fail

Bi-criteria objective:

given a makespan objective

optimize reliability

E. Jeannot (INRIA/ICL) Reliability Scheduling 3 / 30

Related work

A ”new subject” :

Dogan & Ozgüner 2002: Model the problem, RDLS bi-criteria
heuristic.

Dogan & Ozgüner 2004: enhancement of previous result (GA).

Qin & Jiang 2005: first optimize deadline, then maximize reliability.

Hakem & Butelle 2006: BSA, bi-criteria heuristic that outperforms
RDLS.

E. Jeannot (INRIA/ICL) Reliability Scheduling 4 / 30

Modeling

G = (V ,E): a DAG.

vi ∈ V is associated a number of operations: oi .

n = |V |
ei = (i , j) ∈ E is associated li the time to send data from task vi to
task vj (if they are not executed on the processor).

a set P of m processors
processor pj ∈ P is associated with two values:

τj the time to perform one operation and
λj the failure rate.

vi executed on pj will last oi × τj .

Assumption:

During the execution of the DAG, the failure rate is constant.

⇒ failure model follows an exponential law.

⇒ probability that vi finishes (correctly) its execution:

e−oi×τj×λj

E. Jeannot (INRIA/ICL) Reliability Scheduling 5 / 30

Modeling

G = (V ,E): a DAG.

vi ∈ V is associated a number of operations: oi .

n = |V |
ei = (i , j) ∈ E is associated li the time to send data from task vi to
task vj (if they are not executed on the processor).

a set P of m processors
processor pj ∈ P is associated with two values:

τj the time to perform one operation and
λj the failure rate.

vi executed on pj will last oi × τj .

Assumption:

During the execution of the DAG, the failure rate is constant.

⇒ failure model follows an exponential law.

⇒ probability that vi finishes (correctly) its execution:

e−oi×τj×λj

E. Jeannot (INRIA/ICL) Reliability Scheduling 5 / 30

Outline

1 Introduction, related work and modeling

2 The problem

3 Independent unitary tasks

4 Independent tasks

5 General Case

6 Conclusion

E. Jeannot (INRIA/ICL) Reliability Scheduling 6 / 30

Scheduling problem

Allocate tasks to processors such that:

two tasks cannot be allocated to the same processor at the same time,

dependencies are respected.

32

Slack example 2

1

2 3

5 6

7

4

8

P
1

P
2

P
3

P
4

10 1

8 4 1

2
1 1

1

1

2 3

5 6

7

4

8

0

0

2

1

0 1

0

0
 1

1 2

3 5 7

6

8

4

E. Jeannot (INRIA/ICL) Reliability Scheduling 7 / 30

Criteria

Cj : termination date of processor j

Two criteria to optimize:

Makespan: minimize
M = max(Cj)

Reliability: maximize

psucc =
m∏

j=1

e−Cjλj = e−
Pm

j=1 Cjλj

or minimize
m∑

j=1

Cjλj

E. Jeannot (INRIA/ICL) Reliability Scheduling 8 / 30

Two unrelated criteria

Proposition

Let S be a schedule where all the tasks have been assigned, in topological
order, to the processor i such that λiτi is minimum. Then any schedule
S ′ is such that p′succ ≤ psucc.

Proof

s.w.l.o.g i = 1 (i. e., ∀j : τ1λ1 ≤ τjλj).

psucc = e−C1λ1 , p′succ = e−
Pm

j=0 C ′
j λj .

T = T2 ∪ . . . ∪ Tm, sets of the tasks allocated to processors 2, . . . , m by S ′.

C ′
1 ≥ C1 − τ1

P
vi∈T oi .

∀ 2 ≤ j ≤ m, C ′
j ≥ τj

P
vi∈Tj

oi

mX
j=1

C ′
j λj − C1λ1 ≥

mX
j=2

0@(τjλj − τ1λ1)
X
vi∈Tj

oi

1A ≥ 0

⇒ psucc

p′succ
= e

Pm
j=1 C ′

j λj−C1λ1 ≥ 1

E. Jeannot (INRIA/ICL) Reliability Scheduling 9 / 30

Two unrelated criteria

Proposition

Let S be a schedule where all the tasks have been assigned, in topological
order, to the processor i such that λiτi is minimum. Then any schedule
S ′ is such that p′succ ≤ psucc.

Proof

s.w.l.o.g i = 1 (i. e., ∀j : τ1λ1 ≤ τjλj).

psucc = e−C1λ1 , p′succ = e−
Pm

j=0 C ′
j λj .

T = T2 ∪ . . . ∪ Tm, sets of the tasks allocated to processors 2, . . . , m by S ′.

C ′
1 ≥ C1 − τ1

P
vi∈T oi .

∀ 2 ≤ j ≤ m, C ′
j ≥ τj

P
vi∈Tj

oi

mX
j=1

C ′
j λj − C1λ1 ≥

mX
j=2

0@(τjλj − τ1λ1)
X
vi∈Tj

oi

1A ≥ 0

⇒ psucc

p′succ
= e

Pm
j=1 C ′

j λj−C1λ1 ≥ 1

E. Jeannot (INRIA/ICL) Reliability Scheduling 9 / 30

Two unrelated criteria

Proposition

Let S be a schedule where all the tasks have been assigned, in topological
order, to the processor i such that λiτi is minimum. Then any schedule
S ′ is such that p′succ ≤ psucc.

Proof

s.w.l.o.g i = 1 (i. e., ∀j : τ1λ1 ≤ τjλj).

psucc = e−C1λ1 , p′succ = e−
Pm

j=0 C ′
j λj .

T = T2 ∪ . . . ∪ Tm, sets of the tasks allocated to processors 2, . . . , m by S ′.

C ′
1 ≥ C1 − τ1

P
vi∈T oi .

∀ 2 ≤ j ≤ m, C ′
j ≥ τj

P
vi∈Tj

oi

mX
j=1

C ′
j λj − C1λ1 ≥

mX
j=2

0@(τjλj − τ1λ1)
X
vi∈Tj

oi

1A ≥ 0

⇒ psucc

p′succ
= e

Pm
j=1 C ′

j λj−C1λ1 ≥ 1

E. Jeannot (INRIA/ICL) Reliability Scheduling 9 / 30

Bi-criteria scheduling

Objective: maximizing the reliability subject to the condition that the
makespan is minimized.

Finding the optimal makespan, is most of the time NP-hard,

we aim at designing an (α, β)-approximation algorithm.

(α, β)-approximation algorithm:

makespan at most α times larger than the optimal one,
probability of failure is at most β times larger than the optimal one
(among the schedules that minimize the makespan).

E. Jeannot (INRIA/ICL) Reliability Scheduling 10 / 30

Approximation algorithm and probability

Let psucc (resp. pfail) be the probability of success (resp. of failure) of a
schedule S .
Let p̃succ (resp. p̃fail) be the optimal probability of success (resp. of
failure) for the same input as S .

β = 5 , p̃fail = 0.3 ⇒ pfail ≤ β · p̃fail = 5× 0.3 = 1.5!

Proposition

psucc ≥ p̃β
succ ⇒ pfail ≤ β · p̃fail

Proof The proof is based on the Taylor’s series of (1− x)n, where,
∀x ∈ [0, 1],∀n ∈ [1,+∞[, (1− x)n ≤ 1− nx .

pfail = 1− psucc ≤ 1− p̃β
succ = 1− (1− p̃fail)

β

≤ 1− (1− β · p̃fail) = β · p̃fail

E. Jeannot (INRIA/ICL) Reliability Scheduling 11 / 30

Approximation algorithm and probability

Let psucc (resp. pfail) be the probability of success (resp. of failure) of a
schedule S .
Let p̃succ (resp. p̃fail) be the optimal probability of success (resp. of
failure) for the same input as S .

β = 5 , p̃fail = 0.3 ⇒ pfail ≤ β · p̃fail = 5× 0.3 = 1.5!

Proposition

psucc ≥ p̃β
succ ⇒ pfail ≤ β · p̃fail

Proof The proof is based on the Taylor’s series of (1− x)n, where,
∀x ∈ [0, 1],∀n ∈ [1,+∞[, (1− x)n ≤ 1− nx .

pfail = 1− psucc ≤ 1− p̃β
succ = 1− (1− p̃fail)

β

≤ 1− (1− β · p̃fail) = β · p̃fail

E. Jeannot (INRIA/ICL) Reliability Scheduling 11 / 30

Approximation algorithm and probability

Let psucc (resp. pfail) be the probability of success (resp. of failure) of a
schedule S .
Let p̃succ (resp. p̃fail) be the optimal probability of success (resp. of
failure) for the same input as S .

β = 5 , p̃fail = 0.3 ⇒ pfail ≤ β · p̃fail = 5× 0.3 = 1.5!

Proposition

psucc ≥ p̃β
succ ⇒ pfail ≤ β · p̃fail

Proof The proof is based on the Taylor’s series of (1− x)n, where,
∀x ∈ [0, 1],∀n ∈ [1,+∞[, (1− x)n ≤ 1− nx .

pfail = 1− psucc ≤ 1− p̃β
succ = 1− (1− p̃fail)

β

≤ 1− (1− β · p̃fail) = β · p̃fail

E. Jeannot (INRIA/ICL) Reliability Scheduling 11 / 30

Approximation algorithm and probability

Let psucc (resp. pfail) be the probability of success (resp. of failure) of a
schedule S .
Let p̃succ (resp. p̃fail) be the optimal probability of success (resp. of
failure) for the same input as S .

β = 5 , p̃fail = 0.3 ⇒ pfail ≤ β · p̃fail = 5× 0.3 = 1.5!

Proposition

psucc ≥ p̃β
succ ⇒ pfail ≤ β · p̃fail

Proof The proof is based on the Taylor’s series of (1− x)n, where,
∀x ∈ [0, 1],∀n ∈ [1,+∞[, (1− x)n ≤ 1− nx .

pfail = 1− psucc ≤ 1− p̃β
succ = 1− (1− p̃fail)

β

≤ 1− (1− β · p̃fail) = β · p̃fail

E. Jeannot (INRIA/ICL) Reliability Scheduling 11 / 30

Outline

1 Introduction, related work and modeling

2 The problem

3 Independent unitary tasks

4 Independent tasks

5 General Case

6 Conclusion

E. Jeannot (INRIA/ICL) Reliability Scheduling 12 / 30

Independent unitary tasks

oi = 1 and E = ∅, n = |V |.

Algorithm 1 Makespan-optimal allocation for independent unitary tasks

for i=1 to P

ni ←
⌊

1/τiP
1/τi

⌋
× n

while
∑

ni < n
k = argmin(τk(nk + 1))
nk ← nk + 1

Above algorithm gives Mopt the best achievable makespan.
For the reliability criteria the user gives the value of α that tells how far
from the optimal makespan he/she can tolerate to be.
Then we compute a schedule such that:

M ≤ αMopt

it has the best reliability among all the schedules with makespan ≤ M.

E. Jeannot (INRIA/ICL) Reliability Scheduling 13 / 30

Independent unitary tasks

oi = 1 and E = ∅, n = |V |.
Algorithm 1 Makespan-optimal allocation for independent unitary tasks

for i=1 to P

ni ←
⌊

1/τiP
1/τi

⌋
× n

while
∑

ni < n
k = argmin(τk(nk + 1))
nk ← nk + 1

Above algorithm gives Mopt the best achievable makespan.
For the reliability criteria the user gives the value of α that tells how far
from the optimal makespan he/she can tolerate to be.
Then we compute a schedule such that:

M ≤ αMopt

it has the best reliability among all the schedules with makespan ≤ M.

E. Jeannot (INRIA/ICL) Reliability Scheduling 13 / 30

Independent unitary tasks

oi = 1 and E = ∅, n = |V |.
Algorithm 1 Makespan-optimal allocation for independent unitary tasks

for i=1 to P

ni ←
⌊

1/τiP
1/τi

⌋
× n

while
∑

ni < n
k = argmin(τk(nk + 1))
nk ← nk + 1

Above algorithm gives Mopt the best achievable makespan.
For the reliability criteria the user gives the value of α that tells how far
from the optimal makespan he/she can tolerate to be.
Then we compute a schedule such that:

M ≤ αMopt

it has the best reliability among all the schedules with makespan ≤ M.

E. Jeannot (INRIA/ICL) Reliability Scheduling 13 / 30

Optimal algorithm for Independent unitary tasks

Algorithm 2 Optimal reliable allocation for independent unitary tasks

Input: α ∈ [1,+∞[
Compute M = αMopt using previous algorithm
Sort the processor by increasing λiτi

X ← 0
for i=1 to P

if X < N

ni ← min
(
N − X ,

⌊
M
τi

⌋)
else

ni ← 0
X ← X + ni

E. Jeannot (INRIA/ICL) Reliability Scheduling 14 / 30

Proof of optimality of the reliability

We need to show that
∑

i∈[1,P] niλiτi is minimum.

First let us remark that the algorithm fills the processor of task in the
increasing order of λiτi .

⇒ any other valid allocation {n′1, . . . , n′N} is such that n′i < ni and
n′j > nj for any i < j .

w.l.o.g. let n′1 = n1 − k, n′i = ni + k and n′j = nj for k ∈ [1, ni], j 6= 1
and j 6= i .

Then the difference between the two objective values is:

X = n1λ1τ1 + . . . + niλiτi + . . . + nNλNτN − n′1λ1τ1 − . . .− n′i λiτi − . . . + n′NλNτN

= λ1τ1(n1 − n′1) + λiτi (ni − n′i)

= kλ1τ1 − kλiτi

= k(λ1τ1 − λiτi)

≤ 0 because λiτi ≥ λ1τ1.

Hence, the first allocation has a smaller objective value.

E. Jeannot (INRIA/ICL) Reliability Scheduling 15 / 30

Proof of optimality of the reliability

We need to show that
∑

i∈[1,P] niλiτi is minimum.

First let us remark that the algorithm fills the processor of task in the
increasing order of λiτi .

⇒ any other valid allocation {n′1, . . . , n′N} is such that n′i < ni and
n′j > nj for any i < j .

w.l.o.g. let n′1 = n1 − k, n′i = ni + k and n′j = nj for k ∈ [1, ni], j 6= 1
and j 6= i .

Then the difference between the two objective values is:

X = n1λ1τ1 + . . . + niλiτi + . . . + nNλNτN − n′1λ1τ1 − . . .− n′i λiτi − . . . + n′NλNτN

= λ1τ1(n1 − n′1) + λiτi (ni − n′i)

= kλ1τ1 − kλiτi

= k(λ1τ1 − λiτi)

≤ 0 because λiτi ≥ λ1τ1.

Hence, the first allocation has a smaller objective value.

E. Jeannot (INRIA/ICL) Reliability Scheduling 15 / 30

Proof of optimality of the reliability

We need to show that
∑

i∈[1,P] niλiτi is minimum.

First let us remark that the algorithm fills the processor of task in the
increasing order of λiτi .

⇒ any other valid allocation {n′1, . . . , n′N} is such that n′i < ni and
n′j > nj for any i < j .

w.l.o.g. let n′1 = n1 − k, n′i = ni + k and n′j = nj for k ∈ [1, ni], j 6= 1
and j 6= i .

Then the difference between the two objective values is:

X = n1λ1τ1 + . . . + niλiτi + . . . + nNλNτN − n′1λ1τ1 − . . .− n′i λiτi − . . . + n′NλNτN

= λ1τ1(n1 − n′1) + λiτi (ni − n′i)

= kλ1τ1 − kλiτi

= k(λ1τ1 − λiτi)

≤ 0 because λiτi ≥ λ1τ1.

Hence, the first allocation has a smaller objective value.

E. Jeannot (INRIA/ICL) Reliability Scheduling 15 / 30

Proof of optimality of the reliability

We need to show that
∑

i∈[1,P] niλiτi is minimum.

First let us remark that the algorithm fills the processor of task in the
increasing order of λiτi .

⇒ any other valid allocation {n′1, . . . , n′N} is such that n′i < ni and
n′j > nj for any i < j .

w.l.o.g. let n′1 = n1 − k, n′i = ni + k and n′j = nj for k ∈ [1, ni], j 6= 1
and j 6= i .

Then the difference between the two objective values is:

X = n1λ1τ1 + . . . + niλiτi + . . . + nNλNτN − n′1λ1τ1 − . . .− n′i λiτi − . . . + n′NλNτN

= λ1τ1(n1 − n′1) + λiτi (ni − n′i)

= kλ1τ1 − kλiτi

= k(λ1τ1 − λiτi)

≤ 0 because λiτi ≥ λ1τ1.

Hence, the first allocation has a smaller objective value.

E. Jeannot (INRIA/ICL) Reliability Scheduling 15 / 30

Proof of optimality of the reliability

We need to show that
∑

i∈[1,P] niλiτi is minimum.

First let us remark that the algorithm fills the processor of task in the
increasing order of λiτi .

⇒ any other valid allocation {n′1, . . . , n′N} is such that n′i < ni and
n′j > nj for any i < j .

w.l.o.g. let n′1 = n1 − k, n′i = ni + k and n′j = nj for k ∈ [1, ni], j 6= 1
and j 6= i .

Then the difference between the two objective values is:

X = n1λ1τ1 + . . . + niλiτi + . . . + nNλNτN − n′1λ1τ1 − . . .− n′i λiτi − . . . + n′NλNτN

= λ1τ1(n1 − n′1) + λiτi (ni − n′i)

= kλ1τ1 − kλiτi

= k(λ1τ1 − λiτi)

≤ 0 because λiτi ≥ λ1τ1.

Hence, the first allocation has a smaller objective value.

E. Jeannot (INRIA/ICL) Reliability Scheduling 15 / 30

Proof of optimality of the reliability

We need to show that
∑

i∈[1,P] niλiτi is minimum.

First let us remark that the algorithm fills the processor of task in the
increasing order of λiτi .

⇒ any other valid allocation {n′1, . . . , n′N} is such that n′i < ni and
n′j > nj for any i < j .

w.l.o.g. let n′1 = n1 − k, n′i = ni + k and n′j = nj for k ∈ [1, ni], j 6= 1
and j 6= i .

Then the difference between the two objective values is:

X = n1λ1τ1 + . . . + niλiτi + . . . + nNλNτN − n′1λ1τ1 − . . .− n′i λiτi − . . . + n′NλNτN

= λ1τ1(n1 − n′1) + λiτi (ni − n′i)

= kλ1τ1 − kλiτi

= k(λ1τ1 − λiτi)

≤ 0 because λiτi ≥ λ1τ1.

Hence, the first allocation has a smaller objective value.
E. Jeannot (INRIA/ICL) Reliability Scheduling 15 / 30

Outline

1 Introduction, related work and modeling

2 The problem

3 Independent unitary tasks

4 Independent tasks

5 General Case

6 Conclusion

E. Jeannot (INRIA/ICL) Reliability Scheduling 16 / 30

Independent tasks: the makespan problem

E = ∅

Makespan problem related to the 1-D bin-packing problem with variable
bin size.

33

Mopt

P1 P2 Pm

 o1

 o2

o3

o4

o5

 o6

On-2

On-1

on

Mopt/ !1

Mopt/ !2

Mopt/ !m

P1 P2 Pm

!1.o1

!1.o2

!1.o3

!2.o4

!2.o5

!2.o6

!m. on-2

!m. on-1

!m. on

 … …

m∑
j=1

Mopt

τi
=

n∑
i=1

oi ⇒ Mopt =

∑n
i=1 oi∑m
j=1

1
τi

E. Jeannot (INRIA/ICL) Reliability Scheduling 17 / 30

Independent tasks: the makespan problem

E = ∅
Makespan problem related to the 1-D bin-packing problem with variable
bin size.

33

Mopt

P1 P2 Pm

 o1

 o2

o3

o4

o5

 o6

On-2

On-1

on

Mopt/ !1

Mopt/ !2

Mopt/ !m

P1 P2 Pm

!1.o1

!1.o2

!1.o3

!2.o4

!2.o5

!2.o6

!m. on-2

!m. on-1

!m. on

 … …

m∑
j=1

Mopt

τi
=

n∑
i=1

oi ⇒ Mopt =

∑n
i=1 oi∑m
j=1

1
τi

E. Jeannot (INRIA/ICL) Reliability Scheduling 17 / 30

Independent tasks: the makespan problem

E = ∅
Makespan problem related to the 1-D bin-packing problem with variable
bin size.

33

Mopt

P1 P2 Pm

 o1

 o2

o3

o4

o5

 o6

On-2

On-1

on

Mopt/ !1

Mopt/ !2

Mopt/ !m

P1 P2 Pm

!1.o1

!1.o2

!1.o3

!2.o4

!2.o5

!2.o6

!m. on-2

!m. on-1

!m. on

 … …

m∑
j=1

Mopt

τi
=

n∑
i=1

oi ⇒ Mopt =

∑n
i=1 oi∑m
j=1

1
τi

E. Jeannot (INRIA/ICL) Reliability Scheduling 17 / 30

Independent tasks: the makespan problem

E = ∅
Makespan problem related to the 1-D bin-packing problem with variable
bin size.

33

Mopt

P1 P2 Pm

 o1

 o2

o3

o4

o5

 o6

On-2

On-1

on

Mopt/ !1

Mopt/ !2

Mopt/ !m

P1 P2 Pm

!1.o1

!1.o2

!1.o3

!2.o4

!2.o5

!2.o6

!m. on-2

!m. on-1

!m. on

 … …

m∑
j=1

Mopt

τi
=

n∑
i=1

oi ⇒ Mopt =

∑n
i=1 oi∑m
j=1

1
τi

E. Jeannot (INRIA/ICL) Reliability Scheduling 17 / 30

Independent tasks: the makespan problem

Gonzalez, Ibarra, Sahni 1977:{
Mopt ≥

Pn
i=1 oiPm
j=1

1
τi

n ≥ m
⇒ MLPT

Mopt
≤ 2m

m + 1
< 2

LPT: Least Processing Time scheduling heuristic.

E. Jeannot (INRIA/ICL) Reliability Scheduling 18 / 30

Independent tasks: bound on the reliability

MLPT < 2 ·Mopt

p̃succ = e−
P

λiMopt

psucc ≥ e−
P

λiMLPT > e−2
P

λiMopt > p̃2
succ

⇒ pfail ≤ 2 · p̃fail

E. Jeannot (INRIA/ICL) Reliability Scheduling 19 / 30

Independent tasks: bound on the reliability

MLPT < 2 ·Mopt

p̃succ = e−
P

λiMopt

psucc ≥ e−
P

λiMLPT > e−2
P

λiMopt > p̃2
succ

⇒ pfail ≤ 2 · p̃fail

E. Jeannot (INRIA/ICL) Reliability Scheduling 19 / 30

Independent tasks: bound on the reliability

MLPT < 2 ·Mopt

p̃succ = e−
P

λiMopt

psucc ≥ e−
P

λiMLPT > e−2
P

λiMopt > p̃2
succ

⇒ pfail ≤ 2 · p̃fail

E. Jeannot (INRIA/ICL) Reliability Scheduling 19 / 30

Independent tasks: bound on the reliability

MLPT < 2 ·Mopt

p̃succ = e−
P

λiMopt

psucc ≥ e−
P

λiMLPT > e−2
P

λiMopt > p̃2
succ

⇒ pfail ≤ 2 · p̃fail

E. Jeannot (INRIA/ICL) Reliability Scheduling 19 / 30

Can we do better?

We have proven that LPT is (2,2)-approximation algorithm (for
n ≥ m).

Can we help the user in choosing a better trade-off?

Idea: limit the number of usable processors.

Which processors to choose?

The ones with the smallest λτ .

Why?

E. Jeannot (INRIA/ICL) Reliability Scheduling 20 / 30

Can we do better?

We have proven that LPT is (2,2)-approximation algorithm (for
n ≥ m).

Can we help the user in choosing a better trade-off?

Idea: limit the number of usable processors.

Which processors to choose?

The ones with the smallest λτ .

Why?

E. Jeannot (INRIA/ICL) Reliability Scheduling 20 / 30

Can we do better?

We have proven that LPT is (2,2)-approximation algorithm (for
n ≥ m).

Can we help the user in choosing a better trade-off?

Idea: limit the number of usable processors.

Which processors to choose?

The ones with the smallest λτ .

Why?

E. Jeannot (INRIA/ICL) Reliability Scheduling 20 / 30

Can we do better?

We have proven that LPT is (2,2)-approximation algorithm (for
n ≥ m).

Can we help the user in choosing a better trade-off?

Idea: limit the number of usable processors.

Which processors to choose?

The ones with the smallest λτ .

Why?

E. Jeannot (INRIA/ICL) Reliability Scheduling 20 / 30

Can we do better?

We have proven that LPT is (2,2)-approximation algorithm (for
n ≥ m).

Can we help the user in choosing a better trade-off?

Idea: limit the number of usable processors.

Which processors to choose?

The ones with the smallest λτ .

Why?

E. Jeannot (INRIA/ICL) Reliability Scheduling 20 / 30

Can we do better?

We have proven that LPT is (2,2)-approximation algorithm (for
n ≥ m).

Can we help the user in choosing a better trade-off?

Idea: limit the number of usable processors.

Which processors to choose?

The ones with the smallest λτ .

Why?

E. Jeannot (INRIA/ICL) Reliability Scheduling 20 / 30

Makespan/reliability Trade-off

Recall: scheduling all the tasks on the processors i such that
i = argmin(τiλi) leads to the best possible reliability.

Generalization :

Proposition

The best possible reliability among all the schedule with makespan at most
M is achieved when:

1 tasks are mapped to m̃ processors in increasing order of λiτi ,

2 the m̃ − 1 first processors execute tasks up to the date M (Ci = M),

3 the m̃ processor executes the remaining tasks (Cm̃ ≤ M).

Remark: such a schedule is not always feasible (it just gives a lower
bound).

E. Jeannot (INRIA/ICL) Reliability Scheduling 21 / 30

Makespan/reliability Trade-off

Recall: scheduling all the tasks on the processors i such that
i = argmin(τiλi) leads to the best possible reliability.

Generalization :

Proposition

The best possible reliability among all the schedule with makespan at most
M is achieved when:

1 tasks are mapped to m̃ processors in increasing order of λiτi ,

2 the m̃ − 1 first processors execute tasks up to the date M (Ci = M),

3 the m̃ processor executes the remaining tasks (Cm̃ ≤ M).

Remark: such a schedule is not always feasible (it just gives a lower
bound).

E. Jeannot (INRIA/ICL) Reliability Scheduling 21 / 30

Makespan/reliability Trade-off

Recall: scheduling all the tasks on the processors i such that
i = argmin(τiλi) leads to the best possible reliability.

Generalization :

Proposition

The best possible reliability among all the schedule with makespan at most
M is achieved when:

1 tasks are mapped to m̃ processors in increasing order of λiτi ,

2 the m̃ − 1 first processors execute tasks up to the date M (Ci = M),

3 the m̃ processor executes the remaining tasks (Cm̃ ≤ M).

Remark: such a schedule is not always feasible (it just gives a lower
bound).

E. Jeannot (INRIA/ICL) Reliability Scheduling 21 / 30

Makespan/reliability Trade-off

Recall: scheduling all the tasks on the processors i such that
i = argmin(τiλi) leads to the best possible reliability.

Generalization :

Proposition

The best possible reliability among all the schedule with makespan at most
M is achieved when:

1 tasks are mapped to m̃ processors in increasing order of λiτi ,

2 the m̃ − 1 first processors execute tasks up to the date M (Ci = M),

3 the m̃ processor executes the remaining tasks (Cm̃ ≤ M).

Remark: such a schedule is not always feasible (it just gives a lower
bound).

E. Jeannot (INRIA/ICL) Reliability Scheduling 21 / 30

Outline

1 Introduction, related work and modeling

2 The problem

3 Independent unitary tasks

4 Independent tasks

5 General Case

6 Conclusion

E. Jeannot (INRIA/ICL) Reliability Scheduling 22 / 30

Generalizing Scheduling Heuristics: the HEFT case

HEFT (Heterogenous Earlisest Finish Time) to RHEFT (Reliable
Heterogeneous Earlisest Finish Time).

HEFT: at each step of the heuristic map the task that finishes the
earliest to this processors.

RHEFT: select the task that Tendj × λj is minimum.

34

!2=1, "2=2

!1=2, "1=1

4 5

Oi=2?

6 9

Tend1 = 6, Tend1 × λ1 = 12

Tend2 = 9, Tend2 × λ2 = 9

Easy to extend to other heuristics (sufferage, etc.).

E. Jeannot (INRIA/ICL) Reliability Scheduling 23 / 30

Generalizing Scheduling Heuristics: the HEFT case

HEFT (Heterogenous Earlisest Finish Time) to RHEFT (Reliable
Heterogeneous Earlisest Finish Time).

HEFT: at each step of the heuristic map the task that finishes the
earliest to this processors.

RHEFT: select the task that Tendj × λj is minimum.

34

!2=1, "2=2

!1=2, "1=1

4 5

Oi=2?

6 9

Tend1 = 6, Tend1 × λ1 = 12

Tend2 = 9, Tend2 × λ2 = 9

Easy to extend to other heuristics (sufferage, etc.).

E. Jeannot (INRIA/ICL) Reliability Scheduling 23 / 30

Generalizing Scheduling Heuristics: the HEFT case

HEFT (Heterogenous Earlisest Finish Time) to RHEFT (Reliable
Heterogeneous Earlisest Finish Time).

HEFT: at each step of the heuristic map the task that finishes the
earliest to this processors.

RHEFT: select the task that Tendj × λj is minimum.

34

!2=1, "2=2

!1=2, "1=1

4 5

Oi=2?

6 9

Tend1 = 6, Tend1 × λ1 = 12

Tend2 = 9, Tend2 × λ2 = 9

Easy to extend to other heuristics (sufferage, etc.).

E. Jeannot (INRIA/ICL) Reliability Scheduling 23 / 30

Generalizing Scheduling Heuristics: the HEFT case

HEFT (Heterogenous Earlisest Finish Time) to RHEFT (Reliable
Heterogeneous Earlisest Finish Time).

HEFT: at each step of the heuristic map the task that finishes the
earliest to this processors.

RHEFT: select the task that Tendj × λj is minimum.

34

!2=1, "2=2

!1=2, "1=1

4 5

Oi=2?

6 9

Tend1 = 6, Tend1 × λ1 = 12

Tend2 = 9, Tend2 × λ2 = 9

Easy to extend to other heuristics (sufferage, etc.).

E. Jeannot (INRIA/ICL) Reliability Scheduling 23 / 30

Generalizing Scheduling Heuristics: the HEFT case

HEFT (Heterogenous Earlisest Finish Time) to RHEFT (Reliable
Heterogeneous Earlisest Finish Time).

HEFT: at each step of the heuristic map the task that finishes the
earliest to this processors.

RHEFT: select the task that Tendj × λj is minimum.

34

!2=1, "2=2

!1=2, "1=1

4 5

Oi=2?

6 9

Tend1 = 6, Tend1 × λ1 = 12

Tend2 = 9, Tend2 × λ2 = 9

Easy to extend to other heuristics (sufferage, etc.).

E. Jeannot (INRIA/ICL) Reliability Scheduling 23 / 30

Generalizing Scheduling Heuristics: the HEFT case

HEFT (Heterogenous Earlisest Finish Time) to RHEFT (Reliable
Heterogeneous Earlisest Finish Time).

HEFT: at each step of the heuristic map the task that finishes the
earliest to this processors.

RHEFT: select the task that Tendj × λj is minimum.

34

!2=1, "2=2

!1=2, "1=1

4 5

Oi=2?

6 9

Tend1 = 6, Tend1 × λ1 = 12

Tend2 = 9, Tend2 × λ2 = 9

Easy to extend to other heuristics (sufferage, etc.).

E. Jeannot (INRIA/ICL) Reliability Scheduling 23 / 30

Generalizing Scheduling Heuristics: the HEFT case

HEFT (Heterogenous Earlisest Finish Time) to RHEFT (Reliable
Heterogeneous Earlisest Finish Time).

HEFT: at each step of the heuristic map the task that finishes the
earliest to this processors.

RHEFT: select the task that Tendj × λj is minimum.

34

!2=1, "2=2

!1=2, "1=1

4 5

Oi=2?

6 9

Tend1 = 6, Tend1 × λ1 = 12

Tend2 = 9, Tend2 × λ2 = 9

Easy to extend to other heuristics (sufferage, etc.).

E. Jeannot (INRIA/ICL) Reliability Scheduling 23 / 30

Reliability/Makespan Trade-off

Two ways top find a good trade-off:

1 Choose a subset of processors; Q: which order?

2 Use a trade-off variable α (α = 1 switch to HEFT, α = 0 switch to
RHEFT).

E. Jeannot (INRIA/ICL) Reliability Scheduling 24 / 30

Reliability/Makespan Trade-off

Two ways top find a good trade-off:

1 Choose a subset of processors; Q: which order?

2 Use a trade-off variable α (α = 1 switch to HEFT, α = 0 switch to
RHEFT).

E. Jeannot (INRIA/ICL) Reliability Scheduling 24 / 30

Reliability/Makespan Trade-off

Two ways top find a good trade-off:

1 Choose a subset of processors; Q: which order?

2 Use a trade-off variable α (α = 1 switch to HEFT, α = 0 switch to
RHEFT).

E. Jeannot (INRIA/ICL) Reliability Scheduling 24 / 30

Ordering the processors: most reliable first

 10

 100

 10 20 30 40 50 60 70 80 90 100
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

M
ak

es
pa

n

R
el

ia
bi

lit
y

Nb procs

Makespan vs reliability

makespan
reliability

E. Jeannot (INRIA/ICL) Reliability Scheduling 25 / 30

Ordering the processors: fastest first

 10

 100

 10 20 30 40 50 60 70 80 90 100
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

M
ak

es
pa

n

R
el

ia
bi

lit
y

Nb procs

Makespan vs reliability

makespan
reliability

E. Jeannot (INRIA/ICL) Reliability Scheduling 26 / 30

Ordering the processors: smallest λτ first

 10

 100

 10 20 30 40 50 60 70 80 90 100
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

M
ak

es
pa

n

R
el

ia
bi

lit
y

Nb procs

Makespan vs reliability

makespan
reliability

E. Jeannot (INRIA/ICL) Reliability Scheduling 27 / 30

Trade-off variable

 10

 0 0.2 0.4 0.6 0.8 1
 0.8

 0.9

 1

M
ak

es
pa

n

R
el

ia
bi

lit
y

alpha

Makespan vs reliability

makespan
reliability

E. Jeannot (INRIA/ICL) Reliability Scheduling 28 / 30

Outline

1 Introduction, related work and modeling

2 The problem

3 Independent unitary tasks

4 Independent tasks

5 General Case

6 Conclusion

E. Jeannot (INRIA/ICL) Reliability Scheduling 29 / 30

Conclusion

We have studied the problem of scheduling DAGs, with 2 objectives:

1 minimize makespan

2 maximize reliability

Contribution:

optimal algorithms for unitary independent tasks,

approximation algorithm for independent tasks (n ≥ m),

simple way to generalize heuristics to this context,

characterization of the role of the λτ value.

E. Jeannot (INRIA/ICL) Reliability Scheduling 30 / 30

Conclusion

We have studied the problem of scheduling DAGs, with 2 objectives:

1 minimize makespan

2 maximize reliability

Contribution:

optimal algorithms for unitary independent tasks,

approximation algorithm for independent tasks (n ≥ m),

simple way to generalize heuristics to this context,

characterization of the role of the λτ value.

E. Jeannot (INRIA/ICL) Reliability Scheduling 30 / 30

Conclusion

We have studied the problem of scheduling DAGs, with 2 objectives:

1 minimize makespan

2 maximize reliability

Contribution:

optimal algorithms for unitary independent tasks,

approximation algorithm for independent tasks (n ≥ m),

simple way to generalize heuristics to this context,

characterization of the role of the λτ value.

E. Jeannot (INRIA/ICL) Reliability Scheduling 30 / 30

Conclusion

We have studied the problem of scheduling DAGs, with 2 objectives:

1 minimize makespan

2 maximize reliability

Contribution:

optimal algorithms for unitary independent tasks,

approximation algorithm for independent tasks (n ≥ m),

simple way to generalize heuristics to this context,

characterization of the role of the λτ value.

E. Jeannot (INRIA/ICL) Reliability Scheduling 30 / 30

Conclusion

We have studied the problem of scheduling DAGs, with 2 objectives:

1 minimize makespan

2 maximize reliability

Contribution:

optimal algorithms for unitary independent tasks,

approximation algorithm for independent tasks (n ≥ m),

simple way to generalize heuristics to this context,

characterization of the role of the λτ value.

E. Jeannot (INRIA/ICL) Reliability Scheduling 30 / 30

Conclusion

We have studied the problem of scheduling DAGs, with 2 objectives:

1 minimize makespan

2 maximize reliability

Contribution:

optimal algorithms for unitary independent tasks,

approximation algorithm for independent tasks (n ≥ m),

simple way to generalize heuristics to this context,

characterization of the role of the λτ value.

E. Jeannot (INRIA/ICL) Reliability Scheduling 30 / 30

Conclusion

We have studied the problem of scheduling DAGs, with 2 objectives:

1 minimize makespan

2 maximize reliability

Contribution:

optimal algorithms for unitary independent tasks,

approximation algorithm for independent tasks (n ≥ m),

simple way to generalize heuristics to this context,

characterization of the role of the λτ value.

E. Jeannot (INRIA/ICL) Reliability Scheduling 30 / 30

Conclusion

We have studied the problem of scheduling DAGs, with 2 objectives:

1 minimize makespan

2 maximize reliability

Contribution:

optimal algorithms for unitary independent tasks,

approximation algorithm for independent tasks (n ≥ m),

simple way to generalize heuristics to this context,

characterization of the role of the λτ value.

E. Jeannot (INRIA/ICL) Reliability Scheduling 30 / 30

	Introduction, related work and modeling
	The problem
	Independent unitary tasks
	Independent tasks
	General Case
	Conclusion

