Bi-objective Scheduling Algorithms for Optimizing Makespan and Reliability on Heterogeneous Systems

Jack J. Dongarra, Emmanuel Jeannot and Zhiao Shi

INRIA & Innovative Computing Laboratory dongarra@cs.utk.edu, ejeannot@loria.fr, shi@cs.utk.edu

1 Introduction, related work and modeling

- 2 The problem
- Independent unitary tasks
- Independent tasks
- 5 General Case

Problem studied:

- scheduling DAG
- heterogeneous systems
- hardware can fail

Bi-criteria objective:

- given a makespan objective
- optimize reliability

- A "new subject" :
 - Dogan & Ozgüner 2002: Model the problem, RDLS bi-criteria heuristic.
 - Dogan & Ozgüner 2004: enhancement of previous result (GA).
 - Qin & Jiang 2005: first optimize deadline, then maximize reliability.
 - Hakem & Butelle 2006: BSA, bi-criteria heuristic that outperforms RDLS.

Modeling

- G = (V, E): a DAG.
- $v_i \in V$ is associated a number of operations: o_i .
- n = |V|
- e_i = (i, j) ∈ E is associated l_i the time to send data from task v_i to task v_j (if they are not executed on the processor).
- a set P of m processors
- processor $p_j \in P$ is associated with two values:
 - au_j the time to perform one operation and
 - λ_j the failure rate.
- v_i executed on p_j will last $o_i \times \tau_j$.

Modeling

- G = (V, E): a DAG.
- $v_i \in V$ is associated a number of operations: o_i .
- n = |V|
- e_i = (i, j) ∈ E is associated l_i the time to send data from task v_i to task v_j (if they are not executed on the processor).
- a set P of m processors
- processor $p_j \in P$ is associated with two values:
 - au_j the time to perform one operation and
 - λ_j the failure rate.
- v_i executed on p_j will last $o_i \times \tau_j$.

Assumption:

- During the execution of the DAG, the failure rate is constant.
- \Rightarrow failure model follows an exponential law.
- \Rightarrow probability that v_i finishes (correctly) its execution:

$$e^{-o_i imes au_j imes \lambda_j}$$

Introduction, related work and modeling

2 The problem

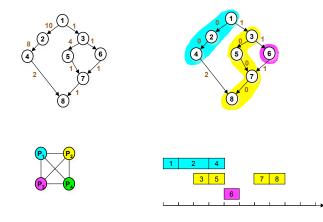
- 3) Independent unitary tasks
- Independent tasks

5 General Case

Scheduling problem

Allocate tasks to processors such that:

- two tasks cannot be allocated to the same processor at the same time,
- dependencies are respected.



Criteria

 C_j : termination date of processor j

Two criteria to optimize:

• Makespan: minimize

$$M = \max(C_j)$$

• Reliability: maximize

$$p_{
m succ} = \prod_{j=1}^m e^{-C_j\lambda_j} = e^{-\sum_{j=1}^m C_j\lambda_j}$$

or minimize

$$\sum_{j=1}^m C_j \lambda_j$$

Proposition

Let S be a schedule where all the tasks have been assigned, in topological order, to the processor i such that $\lambda_i \tau_i$ is minimum. Then any schedule S' is such that $p'_{succ} \leq p_{succ}$.

Proposition

Let S be a schedule where all the tasks have been assigned, in topological order, to the processor i such that $\lambda_i \tau_i$ is minimum. Then any schedule S' is such that $p'_{succ} \leq p_{succ}$.

Proof

• s.w.l.o.g
$$i = 1$$
 (*i. e.*, $\forall j : \tau_1 \lambda_1 \leq \tau_j \lambda_j$).

•
$$p_{\text{succ}} = e^{-C_1\lambda_1}$$
, $p'_{\text{succ}} = e^{-\sum_{j=0}^m C'_j\lambda_j}$.

• $T = T_2 \cup \ldots \cup T_m$, sets of the tasks allocated to processors $2, \ldots, m$ by S'.

•
$$C'_1 \ge C_1 - \tau_1 \sum_{v_i \in T} o_i$$
.

•
$$\forall 2 \leq j \leq m, \ C'_j \geq \tau_j \sum_{v_i \in T_j} o_i$$

Proposition

Let S be a schedule where all the tasks have been assigned, in topological order, to the processor i such that $\lambda_i \tau_i$ is minimum. Then any schedule S' is such that $p'_{succ} \leq p_{succ}$.

Proof

• s.w.l.o.g
$$i = 1$$
 (*i.* e., $\forall j : \tau_1 \lambda_1 \le \tau_j \lambda_j$).
• $p_{\text{succ}} = e^{-C_1 \lambda_1}$, $p'_{\text{succ}} = e^{-\sum_{j=0}^m C'_j \lambda_j}$.
• $T = T_2 \cup \ldots \cup T_m$, sets of the tasks allocated to processors 2, ..., *m* by *S'*.
• $C'_1 \ge C_1 - \tau_1 \sum_{v_i \in T} o_i$.
• $\forall 2 \le j \le m, \ C'_j \ge \tau_j \sum_{v_i \in T_j} o_i$
 $\sum_{j=1}^m C'_j \lambda_j - C_1 \lambda_1 \ge \sum_{j=2}^m \left((\tau_j \lambda_j - \tau_1 \lambda_1) \sum_{v_i \in T_j} o_i \right) \ge 0$
 $\Rightarrow \frac{p_{\text{succ}}}{p'_{\text{succ}}} = e^{\sum_{j=1}^m C'_j \lambda_j - C_1 \lambda_1} \ge 1$

Objective: maximizing the reliability subject to the condition that the makespan is minimized.

- Finding the optimal makespan, is most of the time NP-hard,
- we aim at designing an (α, β) -approximation algorithm.
- (α, β) -approximation algorithm:
 - $\bullet\,$ makespan at most α times larger than the optimal one,
 - probability of failure is at most β times larger than the optimal one (among the schedules that minimize the makespan).

Let p_{succ} (resp. p_{fail}) be the probability of success (resp. of failure) of a schedule *S*.

Let \tilde{p}_{succ} (resp. \tilde{p}_{fail}) be the optimal probability of success (resp. of failure) for the same input as *S*.

Let p_{succ} (resp. p_{fail}) be the probability of success (resp. of failure) of a schedule *S*.

Let \tilde{p}_{succ} (resp. \tilde{p}_{fail}) be the optimal probability of success (resp. of failure) for the same input as *S*.

$$\beta = 5, \tilde{p}_{\mathsf{fail}} = 0.3 \Rightarrow p_{\mathsf{fail}} \le \beta \cdot \tilde{p}_{\mathsf{fail}} = 5 \times 0.3 = 1.5!$$

Let p_{succ} (resp. p_{fail}) be the probability of success (resp. of failure) of a schedule *S*.

Let \tilde{p}_{succ} (resp. \tilde{p}_{fail}) be the optimal probability of success (resp. of failure) for the same input as *S*.

$$\beta = 5, \tilde{p}_{fail} = 0.3 \Rightarrow p_{fail} \le \beta \cdot \tilde{p}_{fail} = 5 \times 0.3 = 1.5!$$

Proposition

$$p_{succ} \geq ilde{p}^{eta}_{succ} \Rightarrow p_{fail} \leq eta \cdot ilde{p}_{fail}$$

Let p_{succ} (resp. p_{fail}) be the probability of success (resp. of failure) of a schedule *S*.

Let \tilde{p}_{succ} (resp. \tilde{p}_{fail}) be the optimal probability of success (resp. of failure) for the same input as *S*.

$$\beta = 5, \tilde{p}_{fail} = 0.3 \Rightarrow p_{fail} \le \beta \cdot \tilde{p}_{fail} = 5 \times 0.3 = 1.5!$$

Proposition

$$p_{\mathit{succ}} \geq ilde{p}^{eta}_{\mathit{succ}} \Rightarrow p_{\mathit{fail}} \leq eta \cdot ilde{p}_{\mathit{fail}}$$

Proof The proof is based on the Taylor's series of $(1 - x)^n$, where, $\forall x \in [0, 1], \forall n \in [1, +\infty[, (1 - x)^n \le 1 - nx]$.

$$egin{array}{rll} egin{array}{rll} egin{array}{rll} eta_{\mathsf{fail}} &=& 1- p_{\mathsf{succ}} \leq 1 - (1 - ilde{p}_{\mathsf{fail}})^eta \ &\leq& 1 - (1 - eta \cdot ilde{p}_{\mathsf{fail}}) = eta \cdot ilde{p}_{\mathsf{fail}} \end{array}$$

Introduction, related work and modeling

- 2 The problem
- Independent unitary tasks
 - Independent tasks
 - 5 General Case

Independent unitary tasks

$$o_i = 1$$
 and $E = \emptyset$, $n = |V|$.

 $\begin{array}{l} \underline{o_i = 1 \text{ and } E = \emptyset, \ n = |V|.} \\ \hline \textbf{Algorithm 1} \text{ Makespan-optimal allocation for independent unitary tasks} \\ \hline \textbf{for i=1 to P} \\ n_i \leftarrow \left\lfloor \frac{1/\tau_i}{\sum 1/\tau_i} \right\rfloor \times n \\ \textbf{while } \sum n_i < n \\ k = \operatorname{argmin}(\tau_k(n_k + 1)) \end{array}$

 $n_k \leftarrow n_k + 1$

 $o_i = 1$ and $E = \emptyset$, n = |V|.

Algorithm 1 Makespan-optimal allocation for independent unitary tasks

for i=1 to P $n_i \leftarrow \left\lfloor \frac{1/\tau_i}{\sum 1/\tau_i} \right\rfloor \times n$ while $\sum n_i < n$ $k = \operatorname{argmin}(\tau_k(n_k + 1))$ $n_k \leftarrow n_k + 1$

Above algorithm gives M_{opt} the best achievable makespan. For the reliability criteria the user gives the value of α that tells how far from the optimal makespan he/she can tolerate to be. Then we compute a schedule such that:

- $M \le \alpha M_{opt}$
- it has the best reliability among all the schedules with makespan $\leq M$.

Algorithm 2 Optimal reliable allocation for independent unitary tasks

Input: $\alpha \in [1, +\infty)$ Compute $M = \alpha M_{opt}$ using previous algorithm Sort the processor by increasing $\lambda_i \tau_i$ $X \leftarrow 0$ for i=1 to P if X < N $n_i \leftarrow \min\left(N - X, \left|\frac{M}{\tau_i}\right|\right)$ else $n_i \leftarrow 0$ $X \leftarrow X + n$

We need to show that $\sum_{i \in [1,P]} n_i \lambda_i \tau_i$ is minimum.

 First let us remark that the algorithm fills the processor of task in the increasing order of λ_iτ_i.

- First let us remark that the algorithm fills the processor of task in the increasing order of $\lambda_i \tau_i$.
- ⇒ any other valid allocation $\{n'_1, \ldots, n'_N\}$ is such that $n'_i < n_i$ and $n'_j > n_j$ for any i < j.

- First let us remark that the algorithm fills the processor of task in the increasing order of $\lambda_i \tau_i$.
- ⇒ any other valid allocation $\{n'_1, \ldots, n'_N\}$ is such that $n'_i < n_i$ and $n'_j > n_j$ for any i < j.
 - w.l.o.g. let $n'_1 = n_1 k$, $n'_i = n_i + k$ and $n'_j = n_j$ for $k \in [1, n_i]$, $j \neq 1$ and $j \neq i$.

- First let us remark that the algorithm fills the processor of task in the increasing order of $\lambda_i \tau_i$.
- ⇒ any other valid allocation $\{n'_1, \ldots, n'_N\}$ is such that $n'_i < n_i$ and $n'_j > n_j$ for any i < j.
 - w.l.o.g. let $n'_1 = n_1 k$, $n'_j = n_i + k$ and $n'_j = n_j$ for $k \in [1, n_i]$, $j \neq 1$ and $j \neq i$.
 - Then the difference between the two objective values is:

We need to show that $\sum_{i \in [1,P]} n_i \lambda_i \tau_i$ is minimum.

- First let us remark that the algorithm fills the processor of task in the increasing order of $\lambda_i \tau_i$.
- ⇒ any other valid allocation $\{n'_1, \ldots, n'_N\}$ is such that $n'_i < n_i$ and $n'_j > n_j$ for any i < j.
 - w.l.o.g. let $n'_1 = n_1 k$, $n'_i = n_i + k$ and $n'_j = n_j$ for $k \in [1, n_i]$, $j \neq 1$ and $j \neq i$.
 - Then the difference between the two objective values is:

$$X = n_1 \lambda_1 \tau_1 + \ldots + n_i \lambda_i \tau_i + \ldots + n_N \lambda_N \tau_N - n'_1 \lambda_1 \tau_1 - \ldots - n'_i \lambda_i \tau_i - \ldots + n'_N \lambda_N \tau_N$$

= $\lambda_1 \tau_1 (n_1 - n'_1) + \lambda_i \tau_i (n_i - n'_i)$

$$= k\lambda_1\tau_1 - k\lambda_i\tau_i$$

$$= k(\lambda_1 \tau_1 - \lambda_i \tau_i)$$

 \leq 0 because $\lambda_i \tau_i \geq \lambda_1 \tau_1$.

Hence, the first allocation has a smaller objective value.

Introduction, related work and modeling

- 2 The problem
- 3 Independent unitary tasks

Independent tasks

5 General Case

6 Conclusion

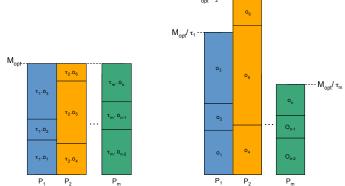
 $E = \emptyset$

 $E = \emptyset$

Makespan problem related to the 1-D bin-packing problem with variable bin size.

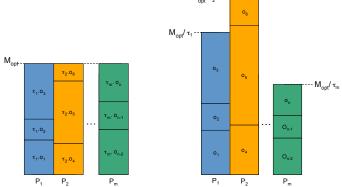
 $E = \emptyset$

Makespan problem related to the 1-D bin-packing problem with variable bin size. M_{opf}/τ_2 ----



 $E = \emptyset$

Makespan problem related to the 1-D bin-packing problem with variable bin size. M_{opf}/τ_2 ----



$$\sum_{j=1}^{m} \frac{M_{\text{opt}}}{\tau_i} = \sum_{i=1}^{n} o_i \Rightarrow M_{\text{opt}} = \frac{\sum_{i=1}^{n} o_i}{\sum_{j=1}^{m} \frac{1}{\tau_i}}$$

E. Jeannot (INRIA/ICL)

Gonzalez, Ibarra, Sahni 1977:

$$\begin{cases} M_{\mathsf{opt}} \geq \frac{\sum_{i=1}^{n} o_i}{\sum_{j=1}^{m} \frac{1}{\tau_j}} & \Rightarrow \frac{M_{\mathsf{LPT}}}{M_{\mathsf{opt}}} \leq \frac{2m}{m+1} < 2\\ n \geq m \end{cases}$$

LPT: Least Processing Time scheduling heuristic.

• $M_{\rm LPT} < 2 \cdot M_{\rm opt}$

• $M_{\text{LPT}} < 2 \cdot M_{\text{opt}}$ • $\tilde{p}_{\text{succ}} = e^{-\sum \lambda_i M_{\text{opt}}}$ • $M_{\text{LPT}} < 2 \cdot M_{\text{opt}}$ • $\tilde{p}_{\text{succ}} = e^{-\sum \lambda_i M_{\text{opt}}}$ • $p_{\text{succ}} \ge e^{-\sum \lambda_i M_{\text{LPT}}} > e^{-2\sum \lambda_i M_{\text{opt}}} > \tilde{p}_{\text{succ}}^2$ • $M_{\text{LPT}} < 2 \cdot M_{\text{opt}}$ • $\tilde{p}_{\text{succ}} = e^{-\sum \lambda_i M_{\text{opt}}}$ • $p_{\text{succ}} \ge e^{-\sum \lambda_i M_{\text{LPT}}} > e^{-2\sum \lambda_i M_{\text{opt}}} > \tilde{p}_{\text{succ}}^2$ $\Rightarrow p_{\text{fail}} \le 2 \cdot \tilde{p}_{\text{fail}}$ • We have proven that LPT is (2,2)-approximation algorithm (for $n \ge m$).

- We have proven that LPT is (2,2)-approximation algorithm (for $n \ge m$).
- Can we help the user in choosing a better trade-off?

- We have proven that LPT is (2,2)-approximation algorithm (for $n \ge m$).
- Can we help the user in choosing a better trade-off?
- Idea: limit the number of usable processors.

- We have proven that LPT is (2,2)-approximation algorithm (for $n \ge m$).
- Can we help the user in choosing a better trade-off?
- Idea: limit the number of usable processors.
- Which processors to choose?

- We have proven that LPT is (2,2)-approximation algorithm (for $n \ge m$).
- Can we help the user in choosing a better trade-off?
- Idea: limit the number of usable processors.
- Which processors to choose?
- The ones with the smallest $\lambda \tau$.

- We have proven that LPT is (2,2)-approximation algorithm (for $n \ge m$).
- Can we help the user in choosing a better trade-off?
- Idea: limit the number of usable processors.
- Which processors to choose?
- The ones with the smallest $\lambda \tau$.
- Why?

Generalization :

Proposition The best possible reliability among all the schedule with makespan at most M is achieved when:

Generalization :

Proposition

The best possible reliability among all the schedule with makespan at most *M* is achieved when:

- tasks are mapped to \tilde{m} processors in increasing order of $\lambda_i \tau_i$,
- 2 the $\tilde{m} 1$ first processors execute tasks up to the date M ($C_i = M$),
- **③** the \tilde{m} processor executes the remaining tasks ($C_{\tilde{m}} \leq M$).

Generalization :

Proposition

The best possible reliability among all the schedule with makespan at most *M* is achieved when:

- tasks are mapped to \tilde{m} processors in increasing order of $\lambda_i \tau_i$,
- 2 the $\tilde{m} 1$ first processors execute tasks up to the date M ($C_i = M$),
- **◎** the \tilde{m} processor executes the remaining tasks ($C_{\tilde{m}} \leq M$).

Remark: such a schedule is not always feasible (it just gives a lower bound).

Introduction, related work and modeling

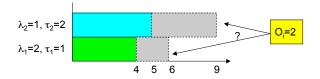
- 2 The problem
- 3 Independent unitary tasks
- Independent tasks

• HEFT (*Heterogenous Earlisest Finish Time*) to RHEFT (*Reliable Heterogeneous Earlisest Finish Time*).

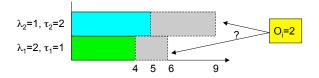
- HEFT (*Heterogenous Earlisest Finish Time*) to RHEFT (*Reliable Heterogeneous Earlisest Finish Time*).
- HEFT: at each step of the heuristic map the task that finishes the earliest to this processors.

- HEFT (*Heterogenous Earlisest Finish Time*) to RHEFT (*Reliable Heterogeneous Earlisest Finish Time*).
- HEFT: at each step of the heuristic map the task that finishes the earliest to this processors.
- RHEFT: select the task that $T_{end_i} \times \lambda_j$ is minimum.

- HEFT (*Heterogenous Earlisest Finish Time*) to RHEFT (*Reliable Heterogeneous Earlisest Finish Time*).
- HEFT: at each step of the heuristic map the task that finishes the earliest to this processors.
- RHEFT: select the task that $T_{end_i} \times \lambda_j$ is minimum.

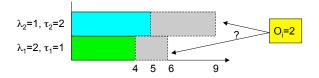


- HEFT (*Heterogenous Earlisest Finish Time*) to RHEFT (*Reliable Heterogeneous Earlisest Finish Time*).
- HEFT: at each step of the heuristic map the task that finishes the earliest to this processors.
- RHEFT: select the task that $T_{end_i} \times \lambda_j$ is minimum.



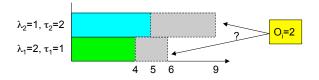
• $T_{\text{end1}} = 6$, $T_{\text{end1}} \times \lambda_1 = 12$

- HEFT (*Heterogenous Earlisest Finish Time*) to RHEFT (*Reliable Heterogeneous Earlisest Finish Time*).
- HEFT: at each step of the heuristic map the task that finishes the earliest to this processors.
- RHEFT: select the task that $T_{end_i} \times \lambda_j$ is minimum.



- $T_{\text{end1}} = 6$, $T_{\text{end1}} imes \lambda_1 = 12$
- $T_{\rm end2}=9$, $T_{\rm end2} imes\lambda_2=9$

- HEFT (*Heterogenous Earlisest Finish Time*) to RHEFT (*Reliable Heterogeneous Earlisest Finish Time*).
- HEFT: at each step of the heuristic map the task that finishes the earliest to this processors.
- RHEFT: select the task that $T_{end_i} \times \lambda_j$ is minimum.



• $T_{\text{end1}} = 6$, $T_{\text{end1}} imes \lambda_1 = 12$

•
$$T_{
m end2}=$$
 9, $T_{
m end2} imes\lambda_2=$ 9

Easy to extend to other heuristics (sufferage, etc.).

Two ways top find a good trade-off:

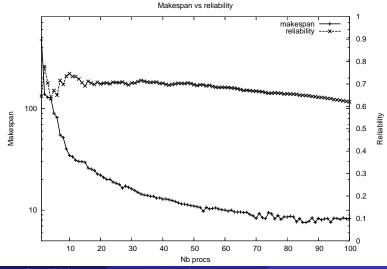
Two ways top find a good trade-off:

Choose a subset of processors; Q: which order?

Two ways top find a good trade-off:

- Choose a subset of processors; Q: which order?
- **②** Use a trade-off variable α ($\alpha = 1$ switch to HEFT, $\alpha = 0$ switch to RHEFT).

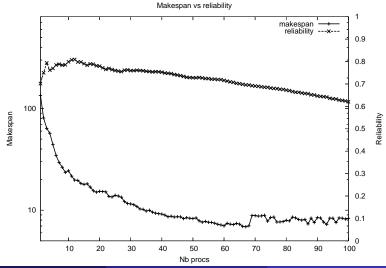
Ordering the processors: most reliable first



E. Jeannot (INRIA/ICL)

Reliability Scheduling

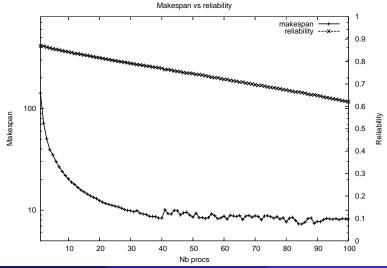
Ordering the processors: fastest first



E. Jeannot (INRIA/ICL)

Reliability Scheduling

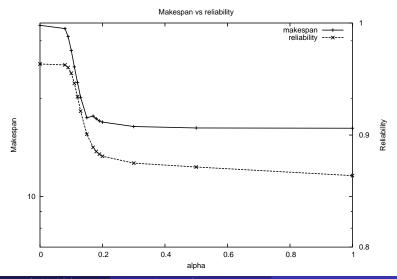
Ordering the processors: smallest $\lambda \tau$ first



E. Jeannot (INRIA/ICL)

Reliability Scheduling

27 / 30



E. Jeannot (INRIA/ICL)

Reliability Scheduling

Introduction, related work and modeling

- 2 The problem
- 3 Independent unitary tasks
- Independent tasks
- 5 General Case

minimize makespan

- minimize makespan
- 2 maximize reliability

- minimize makespan
- 2 maximize reliability

- minimize makespan
- 2 maximize reliability

Contribution:

• optimal algorithms for unitary independent tasks,

- minimize makespan
- 2 maximize reliability

- optimal algorithms for unitary independent tasks,
- approximation algorithm for independent tasks ($n \ge m$),

- minimize makespan
- 2 maximize reliability

- optimal algorithms for unitary independent tasks,
- approximation algorithm for independent tasks $(n \ge m)$,
- simple way to generalize heuristics to this context,

- minimize makespan
- 2 maximize reliability

- optimal algorithms for unitary independent tasks,
- approximation algorithm for independent tasks $(n \ge m)$,
- simple way to generalize heuristics to this context,
- characterization of the role of the $\lambda \tau$ value.