
As Scalable As Possible

08/02/07 2

Motivation

• Scale shift in distributed systems
• Key to scalability: Peer to peer communication

paradigm
• Ranging from unstructured to fully structured

overlays.
• Provide various functionalities (search)

• One physical peer may host several logical peers
belonging to different overlays

08/02/07 3

Build one, get one free

• Leverage the existence of multiple overlays
• P2P structured overlay network

• Constrained component (leafset)
• Non-constrained component (Routing table)

• Gossip-based clustering protocol
• Non-constrained component (Random sampling protocol)
• Constrained component (Cluster sampling protocol)

• Build the constrained components and get for free the non-
constrained ones

• Out of the scope of this talk
• Network locality
• Application switch between multiple overlays

08/02/07 4

Roadmap

1. Design rationale
2. Pastry: a structured peer to peer overlay
3. Gossip-based clustering protocol
4. Construction of the joint overlay
5. Simulation results
6. Conclusion and discussion

08/02/07 5

Peer to peer overlay networks

• Logical network on top of a physical networking
infrastructure
• A peer may act both as a client and a server
• Resource aggregation
• Fully decentralized: Limited knowledge of the

network
• Properties

• Scalable
• Robust
• Self-organizing

08/02/07 6

Search in peer to peer overlays

• Data distributed (and
potentially replicated)
between nodes

• Each node knows only the
IP @ of its neighbours

• How to find a data without
a central index?

n1

n2

n3

n5

n6

n7

n4

a

b

c

a

ba
a

a

c

d

08/02/07 7

Structure of peer to peer
overlays

• Several ways of organizing a P2P overlay network
• Search techniques
• Expressiveness

• A file uniquely identified as #4a56b23
• All Britney Spears mp3 files

• Structured P2P overlay: DHT functionality
• Support for exact search

• Unstructured gossip-based P2P overlays
• Cope well with dynamics
• Weakly structured overlay networks
• Support for keyword-based search or range queries

08/02/07 8

Design rationale

Pastry

Constrained
component

Non-constrained
component

Gossip-based overlay

Constrained
component

Non-constrained
component

08/02/07 9

Leveraging the presence of
multiple overlays

• What metrics matter?
• State to maintain
• Routing performance

More maintenance for a better performance
Less maintenance for a similar performance

08/02/07 10

Roadmap

1. Design rationale
2. Pastry: a structured peer to peer overlay
3. Gossip-based clustering protocol
4. Construction of the joint overlay
5. Simulation results
6. Conclusion and discussion

08/02/07 11

Structured P2P overlays

• Rely on a predefined data structure: tree, ring,
linked lists, skip lists etc…

• Peers are assigned a unique Id
• Data are identified by a key
• Map key to peers: Provide a support for a DHT

functionality
• Existing P2P overlays: Pastry, Chord, CAN,

Tapestry, etc.

08/02/07 12

Pastry (MSR/Rice)
• Naming space :

• Ring of 128 bit integers
• nodeIds chosen at random

• Key/node mapping
• key associated to the node with the numerically closest node id

• Data structures
• Routing table

• Identifiers are a set of digits in base 16
• Matrix of 128/4 lines et 16 columns
• routeTable(i,j): nodeId matching the current node identifier up to level I

with the next digit is j
• Leaf set: 8 or 16 closest numerical neighbours in the naming space

08/02/07 13

Pastry: Routing table(#65a1fcx)

0
x

1
x

2
x

3
x

4
x

5
x

7
x

8
x

9
x

a
x

b
x

c
x

d
x

e
x

f
x

6
0
x

6
1
x

6
2
x

6
3
x

6
4
x

6
6
x

6
7
x

6
8
x

6
9
x

6
a
x

6
b
x

6
c
x

6
d
x

6
e
x

6
f
x

6
5
0
x

6
5
1
x

6
5
2
x

6
5
3
x

6
5
4
x

6
5
5
x

6
5
6
x

6
5
7
x

6
5
8
x

6
5
9
x

6
5
b
x

6
5
c
x

6
5
d
x

6
5
e
x

6
5
f
x

6
5
a
0
x

6
5
a
2
x

6
5
a
3
x

6
5
a
4
x

6
5
a
5
x

6
5
a
6
x

6
5
a
7
x

6
5
a
8
x

6
5
a
9
x

6
5
a
a
x

6
5
a
b
x

6
5
a
c
x

6
5
a
d
x

6
5
a
e
x

6
5
a
f
xlog16 N

lines

Line 0

Line 1

Line 2

Line 3

08/02/07 14

Pastry: Routing

Properties
• log16 N hops
• Size of the state

maintained (routing table)
O(log N)

d46a1c

Route(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4
d471f1Leaf set

08/02/07 15

Node departure

• Explicit departure or failure
• Replacement of a node
• The leafset of the closest node in the leafset

contains the closest new node, not yet in the
leafset

• Update from the leafset information
• Update the application

08/02/07 16

Failure detection

• Detected when immediate neighbours in the
name space (leafset) can no longer communicate

• Detected when a contact fails during the routing
Routing uses an alternative route

• Leaf set is aggressively monitored and fixed
• Routing table are lazily repaired

• When a hole is detected during the routing
• Periodic gossip-based maintenance

08/02/07 17

Reducing latency

• Random assignment of
nodeId: Nodes
numerically close are
geographically
(topologically) distant

• Objective: fill the routing
table with nodes so that
routing hops are as short
(latency wise) as possible

• Topological Metric:
latency d467c4

d467f5

6fdacd

08/02/07 18

Exploiting locality in Pastry

• Neighbour selected based of a network proximity metric:
• Closest topological node
• Satisfying the constraints of the routing table

routeTable(i,j):
• nodeId corresponding to the current nodeId courant up

to level i
• next digit = j

• nodes are close at the top level of the routing table
• random nodes at the bottom levels of the routing tables

08/02/07 19

Proximity routing in Pastry

d46a1c

Route(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4
d471f1

Naming space

d467c4

65a1fc
d13da3

d4213f

d462ba

Topological space

Leaf set

08/02/07 20

Performance

0

100

200

300

400

500

600

1 2 3 4 5
Hop Number

Pe
r-

ho
p

di
st

an
ce

Normal Routing Tables
Perfect Routing Tables
No locality

1.59 slower than IP on average

08/02/07 21

Summary

Pastry

Constrained
Component

Leafset

Non-constrained
Component

Routing table

08/02/07 22

Roadmap

1. Design rationale
2. Pastry: a structured peer to peer overlay
3. Gossip-based clustering protocol
4. Construction of the joint overlay
5. Simulation results
6. Conclusion and discussion

08/02/07 23

Unstructured P2P networks

• No (or few) constraints of the choice of neighbours
• Data are stored on any node (no index)
• Search by controlled flooding
• Gossip-based protocols

• Extremely robusts
• Properties close to those of random graphs

08/02/07 24

Gossip-based protocols
• Unstructured peer to peer networks

• Highly resilient to failure and dynamics
• Gossip-based membership protocols

• Periodic exchange of information between nodes
• Basic functionality: Peer sampling

• Provide a sample of peers given a metric
• Random sampling

• Applications
• Event dissemination
• Recovery protocols
• Aggregation

08/02/07 25

Generic substrate

Dissemination
State = msg to broadcast

Topology management
State = membership information

Aggregation
State = data to aggregate

Active thread
Do once every T time units
P=selectPeer()
Send state to P
Receive state[P]
State= update(state[P])

Passive thread
Wait message(P)
Send state to P
State= update(state[P])

08/02/07 26

Design space

• Periodic peerwise communication
• Peer selection
• View propagation

• How peers exchange their membership information?
• What do they exchange?

• View selection: Select (c, buffer)
• c: size of the resulting view
• Buffer: information exchanged

08/02/07 27

Design space: view
propagation

• Buffer (h)
• initialized with the descriptor of the gossiper
• contains c/2 elements
• ignore h “oldest”

• Communication model
• Push:buffer sent
• Push/Pull: buffer sent both ways
• (Pull: left out, the gossiper cannot inject information about

itself, harms connectivity)

08/02/07 28

Design space: peer
selection

• Selection
• Rand: pick a peer uniformly at random
• Head: pick the “youngest” peer
• Tail: pick the “oldest” peer

Note that head leads to correlated views.

08/02/07 29

Design space: view
selection
• Select(c,h,s,buffer)
1. Buffer appended to view
2. Keep the freshest entry for each node
3. h oldest items removed
4. s first items removed (the one sent over)
5. Random nodes removed

• Merge strategies
• Blind (h=0,s=0): select a random subset
• Healer (h=c/2): select the “freshest” entries
• Shuffler (h=0, s=c/2): minimize loss

c: size of the resulting view
H: self-healing parameter
S: shuffle
Buffer: information exchang

08/02/07 30

Gossip-based generic
protocol

1

7

8
9

10

32

4

6 5

1 2 9 5

2 6 10 3

08/02/07 31

Gossip-based generic
protocol

1

7

8
9

10

32

4

6 5

1 2 9 5 6 10 3

08/02/07 32

Gossip-based generic
protocol

1

7

8
9

10

32

4

6 5

2 9 10

08/02/07 33

Peer sampling algorithm

• Common framework for existing gossip-
based protocols
• Lpbcast [Eugster & al, DSN 2001, ACM TOCS 2003]
• Cyclon [Voulgaris & al JNSM 2005]
• Newscast [Jelasity & van Steen, 2002]

• Provide random-graphs like properties
• Average path length
• Degree distribution
• Clustering coefficient

08/02/07 34

Search

n6

n11n4

n10

n12

n7

n8

n4

n1

n2

n3

n5

n6

n7

n9

a

a

a

n8

n4

n10

n11

n12

n4

a ?

Controlled flooding

TTL = time to live
Ex TTL = 3

08/02/07 35

Clustering similar peers

• Peers are not equal
• Geographical proximity
• Social proximity
• Interet-based proximity

• Leverage peers proximity to improve upon search
performance
• Application-dependent proximity metric
• Use of gossip to discover « close » peers and let

them form clusters
• Peer selection and view selection: based on proximity

metric

08/02/07 36

Creating proximity links

08/02/07 37

Gossip-based clustering
protocol

Gossip-based overlay

Constrained
Clustering service

Non constrained
Random Peer

Sampling service

Create cluster view
• Peer selection from cluster

and RPS view
•View selection according to

the proximity metric

Create RPS view
• Maintain connectivity
•Discover new nodes

•Cyclon protocol

08/02/07 38

Impact on hit rate

0

10

20

30

40

50

60

5 10 20 100 200 2000

Contacted Peers

H
its

 %

History-based Random LRU

08/02/07 39

Roadmap

1. Design rationale
2. Pastry: a structured peer to peer overlay
3. Gossip-based clustering protocol
4. Construction of the joint overlay
5. Simulation results
6. Conclusion and discussion

08/02/07 40

Towards multiple overlays

• Easily deployable
• Relevant to have complementary overlays

• DHT for exact search
• Cluster-based (weakly structured) for keyword-

based search
• Leverage the co-existence
• Our contribution: how to build ½ of Pastry and ½

gossip-based cluster-based overlay and get for
free the other ½s.

08/02/07 41

Maintenance of a joint overlay

Pastry

Leaf set: composed
of the k numerically
Closest nodes of Id

Routing table

Gossip-based overlay

Cluster view:
composed of the s

Nodes “closest” to P
according to

the application
Proximity metric

RPS view

Node P
Id: 0000

@IP

Provide
k

random nodes

Provide s
candidates to

fill up the
routing table

08/02/07 42

Routing structure

Pastry
Leafset
• Critical component
• Extremely constrained

Routing table
• Improve performance
• Lazily maintained
• Less constrained

Gossip-based
Cluster
• Extremely constrained

(application-dependent)

Random peer sampling
• Random choice
• Ensure connectivity

08/02/07 43

Roadmap

1. Design rationale
2. Pastry: a structured peer to peer overlay
3. Gossip-based clustering protocol
4. Construction of the joint overlay
5. Simulation results
6. Conclusion and discussion

08/02/07 44

Simulation setup

• Peersim simulator
• Pastry
• C-Gossip: file sharing application

• Interest-based proximity metric

• 50,000 nodes
• Growing network
• Configurations

• Static: nodes join, never leave
• Failure scenario: 20% of the nodes fail

08/02/07 45

Simulation metrics
Compare the performance of the resulting overlay against the

original ones and ideal cases
• Evaluation metrics

• Pastry: number of empty cells in the routing tables
• Gossip-based approach: size of the overlap between

caches in a file sharing application

i

Vj
ji

i

i

i

ji
ji

i

V

s
S

 iV
F

FF
s

i i, F

i

∑
∈=

∪
=

,

,

node of view theis

 node ofcontent thebeing Node

Interest score

08/02/07 46

Static network

08/02/07 47

Static configuration

08/02/07 48

Static configuration: overhead

08/02/07 49

Dynamic scenario: failures

08/02/07 50

Dynamic configuration

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80

no
. o

f e
m

pt
y

ce
lls

% of churning nodes

Pastry with route gossip
Pastry with Sem. Gossip

ideal

08/02/07 51

Dynamic scenario: failures

08/02/07 52

Conclusion
• Many P2P overlays providing various functionalities
• Relevant to have them cohabiting on the same physical

network: how to leverage this
• Better performance at the price of an increased

maintenance
• Similar performance for a lower overhead.

• Open issues
• Application adaptation
• Are the resulting overlays exhibit the same properties wrt

failures, dynamics, functionalities?
• Ex: resilience to churn of RPS? (correlated views)
• Ex: proximity neighbour selection in Pastry

• To what extent this can be generalized?

