Towards Soft Real-Time Applications on Enterprise Desktop Grids

Derrick Kondo, Bruno Kindarji, Gilles Fedak, Franck Cappello

Laboratoire de Recherche en Informatique/INRIA Futurs

Desktop Grids

- Use free compute, storage and network resources in Internet and Intranet environments
- Why use desktop grids?
 - Huge computational power at relatively low cost
 - BOINC (largest Internet desktop grid system) currently provides over 400 TeraFlop/sec from 1 million hosts!
- Used by over 40 applications from wide range of scientific domains

Motivation and Goal

- State of the art: high-throughput, taskparallel applications
- Broaden applicability of desktop grids
- Allow soft real-time applications to utilize desktop grids

Online tomography, sensor networks, genome sequence assembly

Challenge

Volatility
 Resources are shared with user or owner
 Keyboard or mouse activity
 Other user processes
 Causes high rate of nondeterministic failures
 Heterogeneity
 CPU, memory sizes, network

Approach

- Meet soft deadlines for task completion via server-side buffering technique
 - Characterize the factors that effect task completion
 - Construct model from characterization
 - Show evidence that supports model via trace-driven simulation

Problem Statement

H: tasks per batch
C_{in}: period that task batch is added to buffer
b: buffer size
d: task deadline

 $d = b^*(C_{in}/H)$

Performance metric: task success rate

Assumptions

- Tasks are independent and computeintensive
 - Amount of input or output data is small
- Cannot cancel tasks once scheduled
 - Firewalls, NAT's, intermittant network connectivity make this difficult
- If a task fails, worker notifies scheduler as soon as possible

Characeterization Of Aggregate Compute Power

- $p_i^{t,t+\delta}$: Compute power during $[t \text{ and } t+\delta]$ for worker i $P^{t,t+\delta}: \sum_{i=1}^N p_i^{t,t+\delta}$ where N is the # of workers
 - H_0 : Aggregate compute power $P^{t,t+\delta}$ follows a normal distribution
 - Central Limit Theorem: sum of a set of variates from any distribution with finite mean and variance tends toward a normal distribution

Trace Data

San Diego Supercomputer Center (SDSC)

- Submitted compute-intensive application to real desktop grid with 200 hosts over a 1-month period
- Logged number of operations completed per 10 second period to file
- Assembled files to yield availability trace
- UC Berkeley (UCB) [Arpaci95]
 - Logged keyboard/mouse activity and processes for about 85 hosts over a 2-week period

Parameter Estimation

- $p_i^{t,t+\delta}$: Compute power during $[t \text{ and } t+\delta]$ for worker i $P^{t,t+\delta}: \sum_{i=1}^N p_i^{t,t+\delta}$ where N is the # of workers
 - Measured $P^{t,t+\delta}$ at thousands of different values of t with $\delta = 60$ sec.
 - Maximum likelihood estimation to determine parameter fit
 SDSC: P^{t,t+δ} ~ N (1.4*10⁸, 1.56*10⁷)
 UCB: P^{t,t+δ} ~ N (4.8*10⁸, 2.6*10⁷)

UCB Quantile-Quantile Plot

SDSC Quantile-Quantile Plot

Kolmogorov-Smirnov Goodness-of-fit Test

Quantitative test

- Intuition: reflects maximum difference between observed and expected cumulative distribution function (CDF)
 UCB: mean p-value: 0.466
- SDSC: mean p-value: 0.448

Characterization of Deadline Failure Rates

 $f_{dl}(d)$: Fraction of tasks that fail to meet deadline d - Determine $f_{dl}(d)$ using random incidence 1 for empirical 0.9 least-squares fit 15-minute 0.8 = 0.025tasks 0.7 max_{error} = 0.0730.6 for UCB

Failure Rate as a Function of Buffer Size

 $f_{dl}(d) = -0.008 * d + 0.322$

Since $d = f(b) = (C_{in}/H) * b$,

 $f_{dl}(f(b)) = (-0.008 * C_{in} * b)/H + 0.322$

Aggregate Compute Power as a Function of Buffer Size

 $b \ge ((H * s) / (C_{in} * P^{t,t+\delta})) * H$ where s is the size of the task in ops $\iff b \ge (H^2 * s) / (C_{in} * P^{t,t+\delta})$

 $Pr(P^{t,t+\delta} \ge \alpha) = Pr(P^{t,t+\delta} \ge (H^2 * s)/(C_{in} * b))$

Modelling Task Success Rate

$\overline{Pr(P^{t,t+\delta} \ge \alpha)} = Pr(P^{t,t+\delta} \ge (H^2 * s)/(C_{in} * b))$ $f_{dl}(f(b)) = (-0.008 * C_{in} * b)/H + 0.322$

$\leq S(b) \geq Pr(P^{t,t+\delta} > \alpha)(1 - f_{dl}(f(b)))$

 $S(b) \ge Pr(P^{t,t+\delta} > (H^2 * s) / (C_{in} * b))(1 - ((-0.008 * C_{in} * b) / H + 0.322))$

15m-Task Success Rate Versus Buffer Size on UCB

Related Work

Characterization

 Passive measurement techniques for measuring CPU or host availability [Wolski, Dinda]
 Ignore effects of keyboard and mouse activity
 Susceptible to OS idiosyncracies
 Correspond to a different definition of availability

Soft real-time scheduling in shared, undedicated environments [Dinda]

Use different definition of availability (do not consider task failures)

Summary

Characterized desktop grids Showed that aggegate compute power can be modelled as a normal distribution Showed that deadline task failure rate can be modelled as a linear function Created closed-form model of task success rate as a function of buffer size

Compared accuracy with simulated results

Current and Future Work

- Characterization of *Internet* desktop grids: XtremLab (http://xtremlab.lri.fr)
- Approach
 - Create BOINC-based project to gather availability measurements
 - Generative and predictive aggregate and per host models
- Status
 - Running since March, 2006Over 7,000 participating hosts

Current and Future Work Continued

- Enable soft real-time applications in BOINC with emphasis on scheduling
- Approach
 - Provide simulation framework by which to test, evaluate, and compare novel desktop grid schedulers: SimBOINC
 - Based on SimGrid [Legrand]
 - Graft BOINC scheduling code
 - Will utilize models from XtremLab
- Status: alpha version available
 - Will be used to test BOINC scheduler itself

Current and Future Work Continued

- Enable soft real-time applications in BOINC with emphasis on scheduling
- Approach
 - Provide simulation framework by which to test, evaluate, and compare novel desktop grid schedulers: SimBOINC
 - Based on SimGrid [Legrand]
 - Graft BOINC scheduling code
 - Will utilize models from XtremLab
- Status: alpha version available
 - Will be used to test BOINC scheduler itself

Ensuring Worker Request Rates for Soft Real-Time Applications

- Want batch of *M* tasks to complete with time *T*
- Each tasks takes Y time units
- Maximum time to send out *M* tasks is W = T Y
- Let R be the number of requests that arrive within period W

Find the average host request period z_h so that $R \ge M$ requests arrive in the period of length W with 95% probability

15m-Task Success Rate Versus Buffer Size on UCB

