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Networks

A network: “set of entities connected by links”.

Optimization problems:

e.g. routing problem, scheduling problem.
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Outline

� Context

- Classical optimization problems
- Optimization problems with independent users� Results� Scheduling

- Performance vs stability
- Performance vs truthfulness� Routing
- Performance of distributed algorithms� Future work
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Classical combinatorial optimization problems

Given:� A set of instances (data)� For each instance: a set of feasible solutions� An objective function

Our goal:

Find the best solution for the objective function.
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Example

Given:� a set of tasks: 31 2 4

2 machines:

time0 1 2 3 4 5 6 7

M1
M2

� we have to schedule the tasks on the machines

Goal:
Minimize the completion time of the last task (makespan).

time0 1 2 3 4 5 6 7

3

1

2

4M1
M2

time0 1 2 3 4 5 6 7

3

2

1

4M1
M2
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Performance measure

Let I be the set of possible instances.

Let I be an instance.A(I) = obj. function’s value in the solution returned by A.OPT (I) = obj. function’s value in an optimal solution.

Approximation ratio (A) = maxI2I A(I)OPT (I)
Example: for a scheduling problem

Approximation ratio (A) = maxI Makespan in the schedule returned by A

Makespan in an optimal schedule
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Taking into account independent users

Each independent user has:� its own objective function� a set of possible strategies (a degree of freedom)� private data

��
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Taking into account independent users

Each independent user has:� its own objective function� a set of possible strategies (a degree of freedom)� private data

Nash equilibrium: a situation in which no user can improve its
own objective function by unilaterally changing strategy.
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own objective function by unilaterally changing strategy.
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Taking into account independent users

Each independent user has:� its own objective function� a set of possible strategies (a degree of freedom)� private data

Nash equilibrium: a situation in which no user can improve its
own objective function by unilaterally changing strategy.

Example:� Each task wishes to minimize the load of its machine� Each task can choose on which machine to be scheduled

Nash equilibrium:

time0 1 2 3 4 5 6 7

3

2

1

4M1
M2

If I go on M2 the load of
my machine will be 6.

��
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Taking into account independent users

Each independent user has:� its own objective function� a set of possible strategies (a degree of freedom)� private data

Truthfulness: a situation in which no user has incentive to give
false informations about its private data.

Example:� Each task wishes to minimize its completion time� Private data = length of a task.
Each task bids a value representing its length
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Optimization problems with independent users

Given:
a combinatorial optimization problem

+

a set of independent users.

Our goal: to find an algorithm which optimizes the (global)
objective function despite the behavior of the selfish users.

This algorithm:
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Optimization problems with independent users

Given:
a combinatorial optimization problem

+

a set of independent users.

Our goal: to find an algorithm which optimizes the (global)
objective function despite the behavior of the selfish users.

This algorithm:

returns stable
solutions
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Optimization problems with independent users

Given:
a combinatorial optimization problem

+

a set of independent users.

Our goal: to find an algorithm which optimizes the (global)
objective function despite the behavior of the selfish users.

This algorithm:

returns stable
solutions

and/or is truthful
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Distributed or centralized settings

Example:� Each task wishes to minimize the load of its machine� Each task can choose on which machine to be scheduled
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Distributed or centralized settings

Example:� Each task wishes to minimize the load of its machine� Each task can choose on which machine to be scheduled

distributed setting centralized setting

time0 1 2 3 4 5 6 7

3

2

1

4M1
M2

or :

time0 1 2 3 4 5 6 7

3

1

2

4M1
M2

time0 1 2 3 4 5 6 7
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1

2

4M1
M2
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Performance measures� In a distributed setting:

Introduced in [Koutsoupias et Papadimitriou, STACS 1999].

Price of anarchy = maxI2I Global obj. function in the worst NE(I)OPT (I)

�

= maxI2I (I)OPT (I)
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Performance measures� In a distributed setting:

Introduced in [Koutsoupias et Papadimitriou, STACS 1999].

Price of anarchy = maxI2I Global obj. function in the worst NE(I)OPT (I)

� In a centralized setting:

Introduced in [Schultz et al., SODA 2003] and [Anshelevich et al., FOCS 2004].

Approximation ratio w.r.t stable solutions:

Price of stability = maxI2I Global obj. function in the best NE(I)OPT (I)
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Outline

� Context

- Classical optimization problems
- Optimization problems with independent users� Results� Scheduling

- Performance vs stability
- Performance vs truthfulness� Routing
- Performance of distributed algorithms� Future work
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Performance vs Stability: introduction

We wish to schedule selfish tasks on m machines.� Each task is free to choose the machine on which it will be
executed. It wishes to minimize its own completion time.

�
43 � 13m
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Performance vs Stability: introduction

We wish to schedule selfish tasks on m machines.� Each task is free to choose the machine on which it will be
executed. It wishes to minimize its own completion time.� Each machine has a local policy to schedule its tasks.

e.g. the LPT policy (“for Longest Processing Time first”):
each machine schedules its tasks from the largest one to the
smallest one.
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Performance vs Stability: introduction

We wish to schedule selfish tasks on m machines.� Each task is free to choose the machine on which it will be
executed. It wishes to minimize its own completion time.� Each machine has a local policy to schedule its tasks.

e.g. the LPT policy (“for Longest Processing Time first”):
each machine schedules its tasks from the largest one to the
smallest one.

Conjecture CKN: [Christodoulou et al., ICALP 2004]

There is no distributed algorithm which has a price of anarchy
smaller than 43 � 13m .

If this conjecture is true, in order to get a better approximation
ratio, a centralized algorithm is necessary.
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Performance vs Stability: introduction

We have:� A policy per machine.� A protocol which suggests an assignment of the tasks on the
machines.

The tasks accept or refuse this assignment.

��
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Performance vs Stability: introduction

We have:� A policy per machine.� A protocol which suggests an assignment of the tasks on the
machines.

The tasks accept or refuse this assignment.

Goal: A protocol which returns a solution:� which minimizes the makespan� and which is stable.
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Performance vs Stability: introduction

Example: The policy of each machine is LPT: each machine
schedules its tasks from the largest one to the smallest one.

2 2 2

3 3

2

223

3M2
M1 M1

M2

I finish at time 6.
If I go on M2

I’ll finish at time 3.

Not stable Stable
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Price of stability

Recall:

Price of stability = maxI Makespan in the best NE

Makespan in an optimal solution

:

Example: If the policy of each machine is LPT, then the price of
stability is 43 � 13m .
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�-approximate Nash equilibrium

�-approximate Nash equilibrium = a situation in which no task
can decrease its completion time by a factor larger than � by
changing machine.

M2M2

M1M1

M2
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�-approximate Nash equilibrium

�-approximate Nash equilibrium = a situation in which no task
can decrease its completion time by a factor larger than � by
changing machine.

Example: Policy of each machine = LPT.

2 2 2

3 3

2

223

3M2M2

M1M1

I finish at time 6.
If I go on M2, I’ll divide my

completion time by 2.

2-approximate Nash Eq. Nash Eq.
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Price of �-approximate stability

Price of �-approximate stability = maxI Makespan in the best �-approx. NE

Makespan in an optimal solution

[Chen and Roughgarden, SPAA 2006]: study the tradeoff
between stability (�-Nash equilibrium) and approximation ratio in
a network problem.
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Our goal

Goal: study the tradeoff between stability and approximation
ratio.

Policy of the machines = LPT.

What is the price of �-approximate stability ?

Given (r; �), is there a r-approximate algorithm which returns�-approximate NE ?
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Lower bounds (policy = LPT)

Theorem: Let n > 5. There is no algorithm with an approx. ratio< (1 + 1n(n+1)) which returns �-approximate NE with � < n.

n

nn+ 1

n� 1n� 1 : : :: : : nn+1nn+1

nn+1nn+1nn+1 MMMM

1+ 1n(n+1) 1+ 1n(n+1)n
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Lower bounds (policy = LPT)

Theorem: Let n > 5. There is no algorithm with an approx. ratio< (1 + 1n(n+1)) which returns �-approximate NE with � < n.

Sketch of the proof:

1

2

1

2

1

1

n

n tasksn+ 1 tasks

n� 1n� 1 : : :: : : nn+1nn+1

nn+1nn+1nn+1 MMMM

approx. ratio < 1+ 1n(n+1) approx. ratio = 1+ 1n(n+1)n-approximate NE
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Lower bounds (policy = LPT)

1

1.11.051

5

4

3

2

6

7

8

10

9

1.15

87

76

�
approximation ratio

(r; �) : no r-approximate
algorithm which returns �-
approx. NE.
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Upper bounds (policy = LPT)

Theorem: There is a 87 -approximate algorithm which returns3-approximate NE.! Algorithm LPTswap
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Upper bounds (policy = LPT)

Theorem: There is a 87 -approximate algorithm which returns3-approximate NE.! Algorithm LPTswap

Algorithm LPT: schedule greedily the tasks from the largest one
to the smallest one.

Example: Tasks of lengths 8, 5, 4, 3, 3, 2

M3M2
M1
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8

M3M2
M1
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Upper bounds (policy = LPT)

Theorem: There is a 87 -approximate algorithm which returns3-approximate NE.! Algorithm LPTswap
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Upper bounds (policy = LPT)

Theorem: There is a 87 -approximate algorithm which returns3-approximate NE.! Algorithm LPTswap

Algorithm LPT: schedule greedily the tasks from the largest one
to the smallest one.

Example: Tasks of lengths 8, 5, 4, 3, 3, 2

5

4

8

23

3M3M2
M1
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Upper bound: LPTswap� Build an LPT schedule

� � x1 x2 x3

x4
y1 y2M1M2

� x1 x2 x3 x4y1 y2M1M2

�
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Upper bound: LPTswap� Build an LPT schedule� Look at this schedule:� 1st case:

...

x1 x2 x3

x4
y1 y2M1M2

Return the best schedule among the 4 possible ones.

� x1 x2 x3 x4y1 y2M1M2

�
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Upper bound: LPTswap� Build an LPT schedule� Look at this schedule:� 1st case:

...

x1 x2 x3

x4
y1 y2M1M2

Return the best schedule among the 4 possible ones.� 2nd case:

...

x1 x2 x3 x4y1 y2M1M2
Return the best schedule among the 2 possible ones.

�
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Upper bound: LPTswap� Build an LPT schedule� Look at this schedule:� 1st case:

...

x1 x2 x3

x4
y1 y2M1M2

Return the best schedule among the 4 possible ones.� 2nd case:

...

x1 x2 x3 x4y1 y2M1M2
Return the best schedule among the 2 possible ones.� Other cases:
Return the LPT schedule.
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Upper bound: LPTswap

� Build an LPT schedule� Look at this schedule:� 1st case:

...

x1 x2 x3

x4
y1 y2M1M2� 2nd case:

...

x1 x2 x3 x4y1 y2M1M2� Other cases:
Return the LPT schedule.

Sketch of the proof:

� 76�
P < 17 OPT

� 87
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Upper bound: LPTswap

� Build an LPT schedule� Look at this schedule:� 1st case:

...

x1 x2 x3

x4
y1 y2M1M2� 2nd case:
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Upper bound: LPTswap

� Build an LPT schedule� Look at this schedule:� 1st case:

...

x1 x2 x3

x4
y1 y2M1M2� 2nd case:

...

x1 x2 x3 x4y1 y2M1M2� Other cases:
Return the LPT schedule.

Sketch of the proof:� 76 -approximate.

�
P < 17 OPT
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Upper bound: LPTswap

� Build an LPT schedule� Look at this schedule:� 1st case:

...

x1 x2 x3

x4
y1 y2M1M2� 2nd case:

...

x1 x2 x3 x4y1 y2M1M2� Other cases:
Return the LPT schedule.

Sketch of the proof:� 76 -approximate.� In both cases:

- a swap returns an optimal
solution of the large tasks.

-
P

(small tasks) < 17 OPT .
� LPT is 87 -approximate.
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Upper bounds (policy = LPT)

Theorem: There is a (1 + 1�)-approximate algorithm which
returns �-approximate NE.

! Approximation scheme [Graham, 1966]
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Results: (policy = LPT)

1

1.11.051

5

4

3

2

6

7

8

10

9

1.15

87

76

�

(r; �) : no r-approximate
algorithm which returns�-approximate NE.

(r; �) : r-approximate
algorithm which returns�-approximate NE.

approximation ratio
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Other results

� The SPT policy (for “Shortest Processing Time first”) is not as
good as the LPT policy.

� If randomized policies are allowed: each task wishes to
reduce its expected completion time.

The policy which schedules the tasks randomly is optimal.
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Outline

� Context

- Classical optimization problems
- Optimization problems with independent users� Results� Scheduling

- Performance vs stability
- Performance vs truthfulness� Routing
- Performance of distributed algorithms� Future work
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Performances of a truthful algorithm: introduction� Task i has a secret real length (execution time) li.
1� A task can add “fake” data to artificially increase its length:

each task bids a value bi � li.
����
����
����

����
����
����

2.5

bi = 2:5
li = 1� Each task knows the values bidded by the other tasks and the

algorithm.

Each task wishes to reduce its completion time (and may lie if
necessary).
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Performances of a truthful algorithm: introduction

We have tasks to schedule on m machines.

Our goal: to minimize the makespan.

If the tasks lie, it is often not possible to have a guarantee of the
approximation ratio of the makespan.
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Performances of a truthful algorithm: introduction

We have tasks to schedule on m machines.

Our goal: to minimize the makespan.

If the tasks lie, it is often not possible to have a guarantee of the
approximation ratio of the makespan.

A truthful algorithm: an algorithm in which no task has incentive
to bid a false value.
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Performances of a truthful algorithm: introduction

We have tasks to schedule on m machines.

Our goal: to minimize the makespan.

If the tasks lie, it is often not possible to have a guarantee of the
approximation ratio of the makespan.

A truthful algorithm: an algorithm in which no task has incentive
to bid a false value.

Aim: an algorithm (centralized or distributed) which is truthful
and which minimizes the makespan.
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Related work

� Distributed algorithms:
- Not truthful: [Christodoulou et al., ICALP 2004], [Immorlica et al., WINE 2005]

� Truthful centralized algorithms:
- Users are the tasks: they wish to minimize the load of their

machine. [Auletta et al., SPAA 2004]

- Users are the machines which bid their speeds. [Nisan, Ronen,

STOC 1999], [Archer, Tardos, FOCS 2001], [Auletta et al., STACS 2004], etc.
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A truthful algorithm

Algorithm SPT: schedule greedily the tasks from the smallest
one to the largest one.

Example: Tasks of lengths 1, 1, 2, 3, 4, 5, 8

M3
M2

M1

2� 1m
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A truthful algorithm

Algorithm SPT: schedule greedily the tasks from the smallest
one to the largest one.

Example: Tasks of lengths 1, 1, 2, 3, 4, 5, 8

2

1

1

M3
M2

M1

2� 1m
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A truthful algorithm

Algorithm SPT: schedule greedily the tasks from the smallest
one to the largest one.

Example: Tasks of lengths 1, 1, 2, 3, 4, 5, 8

2

1

1 3

M3
M2

M1

2� 1m
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A truthful algorithm

Algorithm SPT: schedule greedily the tasks from the smallest
one to the largest one.

Example: Tasks of lengths 1, 1, 2, 3, 4, 5, 8

2
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1 3

M3
M2

M1

2� 1m
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A truthful algorithm

Algorithm SPT: schedule greedily the tasks from the smallest
one to the largest one.

Example: Tasks of lengths 1, 1, 2, 3, 4, 5, 8

2 5

41

1 3

M3
M2

M1

2� 1m
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A truthful algorithm

Algorithm SPT: schedule greedily the tasks from the smallest
one to the largest one.

Example: Tasks of lengths 1, 1, 2, 3, 4, 5, 8

2 5

41

1 3 8
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M2

M1
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A truthful algorithm

Algorithm SPT: schedule greedily the tasks from the smallest
one to the largest one.

Example: Tasks of lengths 1, 1, 2, 3, 4, 5, 8

2 5

41

1 3 8

M3
M2

M1

This algorithm is truthful.

Approx. ratio: 2� 1m . [Graham 1966]
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A truthful algorithm

Algorithm SPT: schedule greedily the tasks from the smallest
one to the largest one.

Example: Tasks of lengths 1, 1, 2, 3, 4, 5, 8

2 5

41

1 3 8

M3
M2

M1

This algorithm is truthful.

Approx. ratio: 2� 1m . [Graham 1966]

Is there a better truthful algorithm ?
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Performances of a truthful algorithm

Theorem: There is no truthful deterministic algorithm with an
approx. ratio smaller than 2� 1m .

Is there a better truthful (randomized) algorithm ?

32 � 12m
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Performances of a truthful algorithm

Theorem: There is no truthful deterministic algorithm with an
approx. ratio smaller than 2� 1m .

Is there a better truthful (randomized) algorithm ?

Theorem: There is no truthful randomized algorithm with an
approx. ratio smaller than 32 � 12m .
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Performances of a truthful algorithm

Idea: to combine:� A truthful algorithm� an algorithm not truthful but with a good approximation ratio

Algorithm LPT: schedules greedily the tasks from the smallest
one to the largest one.
Approx. ratio = 43 � 13m . [Graham, 1966]

Algorithm SPT�LPT :� with a proba. p: SPT� with a proba. (1� p): LPT.
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Performances of a truthful algorithm

Algorithm SPT�LPT is not truthful:

We have 3 tasks:

13 2

if I bid 2.5 instead of 1.
I will be completed earlier

C1 = p + 3(1� p) = 3� 2p

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����
����
����
���� C1 = 1
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Performances of a truthful algorithm

Algorithm SPT�LPT is not truthful:

We have 3 tasks:

13 2

if I bid 2.5 instead of 1.
I will be completed earlier

if task 1 bids its true value: 1

2

3

1

3

2

1
SPT : LPT : C1 = p + 3(1� p) = 3� 2p

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����
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Performances of a truthful algorithm

Algorithm SPT�LPT is not truthful:

We have 3 tasks:

13 2

if I bid 2.5 instead of 1.
I will be completed earlier

if task 1 bids its true value: 1

2

3

1

3

2

1
SPT : LPT : C1 = p + 3(1� p) = 3� 2p

if task 1 bids a false value: 2. 5

����
����
����

����
����
����

����
����
����

����
����
����

2.5

2 3
SPT : LPT :

3

2.5 2

C1 = 1
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Algorithm DSPT

Algorithm DSPT (“delayed SPT”):

Schedules tasks 1; 2; : : : ; n such that l1 � l2 � : : : ln.
Task (i+ 1) starts when 1m of task i has been executed.

m = 3

time

M1M2M3

(2� 1m)
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Algorithm DSPT

Algorithm DSPT (“delayed SPT”):

Schedules tasks 1; 2; : : : ; n such that l1 � l2 � : : : ln.
Task (i+ 1) starts when 1m of task i has been executed.

Example: m = 3, tasks of lengths 1, 1, 1, 1, 2, 3, 5, 5, 6.
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Theorem: DSPT is (2� 1m)-approximate.
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A truthful algorithm

Algorithm DSPT�LPT :� With a proba. mm+1 : DSPT� With a proba. 1m+1 : LPT

DSPT�LPT= mm+1 �2� 1m�+ 1m+1 � 43 � 13m�m = 2 DSPT�LPT(1:25� ")

DSPT�LPT
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A truthful algorithm

Algorithm DSPT�LPT :� With a proba. mm+1 : DSPT� With a proba. 1m+1 : LPT

Theorem: Expected approximation ratio of DSPT�LPT= mm+1 �2� 1m�+ 1m+1 � 43 � 13m�
e.g. for m = 2: ratio(DSPT�LPT )<1.39, ratio(SPT)=1.5
Recall: there is no truthful (1:25� ")-approximate algorithm.

DSPT�LPT
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A truthful algorithm

Algorithm DSPT�LPT :� With a proba. mm+1 : DSPT� With a proba. 1m+1 : LPT

Theorem: Expected approximation ratio of DSPT�LPT= mm+1 �2� 1m�+ 1m+1 � 43 � 13m�
e.g. for m = 2: ratio(DSPT�LPT )<1.39, ratio(SPT)=1.5
Recall: there is no truthful (1:25� ")-approximate algorithm.

Theorem: DSPT�LPT is truthful.
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A truthful algorithm

Example:
We have 3 tasks:

13 2

I do not have incentive
to bid a false value.

C1 = 53
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A truthful algorithm

Example:
We have 3 tasks:

13 2

I do not have incentive
to bid a false value.

if task 1 bids its true value: 1

1

3

22

31
LPT :DSPT : C1 = 53

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����
����
����
���� C1 = 53

– p.37



A truthful algorithm

Example:
We have 3 tasks:

13 2

I do not have incentive
to bid a false value.

if task 1 bids its true value: 1

1

3

22

31
LPT :DSPT : C1 = 53

if task 1 bids a false value: 2. 5
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LPT :
3

2.5 2
DSPT : C1 = 53
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Other results

Until now: if task i bids bi > li, its execution time is li (it gets its
results li time units after its start).

����
����
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����
����
����

2.5

bi = 2:5
li = 1

i bi > li bi

� �43 � 13m�� (1:1� ")�
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Other model: if task i bids bi > li, its execution time is bi.
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Other results

Until now: if task i bids bi > li, its execution time is li (it gets its
results li time units after its start).

����
����
����

����
����
����

2.5

bi = 2:5
li = 1

Other model: if task i bids bi > li, its execution time is bi.
With this 2nd model:� A deterministic

�43 � 13m�-approximate truthful algorithm.� No deterministic (1:1� ") truthful algorithm.� An optimal randomized truthful algorithm.
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An optimal truthful algorithm

Algorithm BLOCK:� Get an optimal schedule of the tasks.
Let OPT be the makespan of the schedule.
Let Li be the sum of the tasks lengths on Mi.� Add a fake task of length OPT � Li on Mi.� On each machine, tasks are scheduled in a random order.
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Algorithm BLOCK:� Get an optimal schedule of the tasks.
Let OPT be the makespan of the schedule.
Let Li be the sum of the tasks lengths on Mi.� Add a fake task of length OPT � Li on Mi.� On each machine, tasks are scheduled in a random order.

Example:
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An optimal truthful algorithm

Algorithm BLOCK:� Get an optimal schedule of the tasks.
Let OPT be the makespan of the schedule.
Let Li be the sum of the tasks lengths on Mi.� Add a fake task of length OPT � Li on Mi.� On each machine, tasks are scheduled in a random order.

Example:
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2 4 3
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An optimal truthful algorithm

Lemma: Let a set of tasks scheduled in a random order on a
single machine.
The expected completion time of task t is:

lt + 12 Xj 6=t lj

OPT i liOPT 0 bi OPT � OPT 0� i bi = li li + 12 (OPT � li)� i bi > li bi + 12 (OPT 0 � bi)
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An optimal truthful algorithm

Lemma: Let a set of tasks scheduled in a random order on a
single machine.
The expected completion time of task t is:

lt + 12 Xj 6=t lj
Theorem: Algorithm BLOCK is truthful.

Proof: Let OPT be the makespan when i bids li, andOPT 0 be the makespan when it bids bi: OPT � OPT 0.� if i bids bi = li : expected comp. time = li + 12 (OPT � li)� if i bids bi > li : expected comp. time = bi + 12 (OPT 0 � bi)
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Outline

� Context

- Classical optimization problems
- Optimization problems with independent users� Results� Scheduling

- Performance vs stability
- Performance vs truthfulness� Routing
- Performance of distributed algorithms� Future work
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Performance of distributed algorithms

On a set of parallel links:

1P

2P

2 43a set of packets:

source destination
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On a set of parallel links:

23

4

1P

2P
2P
1P 3 2

4

3 61 4 time0 2 5

source destination

– p.42



Performance of distributed algorithms

On a set of parallel links:

23

4

1P

2P
2P
1P 3 2

4

3 61 4 time0 2 5

source destination

Best known distributed algorithm: LPT policy. [Christodoulou et al.,

ICALP 2004]
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Distributed algorithms in trees and rings

We wish to route packets, released at the same time from a
same source in:

SourceSource� Each packet has: a length, a destination� It wishes to minimize its arrival date at its destination� “Store and forward” network
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Related work

The goal is to minimize the maximal arrival date.

� Centralized algorithms in general graphs but with packets of
same length. [Leighton, Maggs, Rao, FOCS 1988], [auf der Heide, Vöcking,

STACS 1995], [Ostrovsky, Rabani, STOC 1997]

�

– p.44



Related work

The goal is to minimize the maximal arrival date.

� Centralized algorithms in general graphs but with packets of
same length. [Leighton, Maggs, Rao, FOCS 1988], [auf der Heide, Vöcking,

STACS 1995], [Ostrovsky, Rabani, STOC 1997]

� Multicommodity flows over time problem: in a path, optimal
solution if each link routes the packets in order of decreasing
remaining distance. [Hall, Hippler, Skutella, ICALP 2003]
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Distributed algorithms in trees and rings

Decentralized setting: each link knows only the packets it has to
route and has a policy to route them. For example:� SPT: Shortest Processing Time first� LPT: Longest Processing Time first� LRD: Longest Remaining Distance first

What is the performance of these policies for the following
problems ?� Minimize the maximum arrival date.� Minimize the average arrival date.
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Example

With the LRD policy: the more a task goes far, the earliest it is
scheduled.

dB

dC

dASource

task C:

task B:

task A: 2

1

10
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Example

With the LRD policy: the more a task goes far, the earliest it is
scheduled.

time = 0
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Example

With the LRD policy: the more a task goes far, the earliest it is
scheduled.

time interval= [0, 2)
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Example

With the LRD policy: the more a task goes far, the earliest it is
scheduled.

time interval= [2, 3)
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Example

With the LRD policy: the more a task goes far, the earliest it is
scheduled.

time interval= [3, 4)
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Example

With the LRD policy: the more a task goes far, the earliest it is
scheduled.

time interval= [4, 5)
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Example

With the LRD policy: the more a task goes far, the earliest it is
scheduled.

time interval= [5, 6)
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Example

With the LRD policy: the more a task goes far, the earliest it is
scheduled.

time interval= [6, 7)
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Example

With the LRD policy: the more a task goes far, the earliest it is
scheduled.

time interval= [7, 8)
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Example

With the LRD policy: the more a task goes far, the earliest it is
scheduled.

time interval= [8, 13)

dB

dC

dASource

task C:

task B:

task A: 2

2

1

1

10

10

– p.46



Example

With the LRD policy: the more a task goes far, the earliest it is
scheduled.

time interval= [13, 23)
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Example

With the LRD policy: the more a task goes far, the earliest it is
scheduled.

time = 23
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Example

With the LRD policy: the more a task goes far, the earliest it is
scheduled.

time = 23

dB

dC

dASource

task C:

task B:

task A: 2

2

1
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In an optimal solution, maximum arrival date = 20.! Approximation ratio � 23=20.
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Rings

Tree: each packet has only one possible strategy.

Ring: choice between two paths at the source.
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Rings

Tree: each packet has only one possible strategy.

Ring: choice between two paths at the source.

Nash equilibrium: No user has incentive to unilaterally change
strategy.
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Rings

Tree: each packet has only one possible strategy.

Ring: choice between two paths at the source.

Nash equilibrium: No user has incentive to unilaterally change
strategy.

Example:

Policy = LPT

1

5 1 5
S S

d d

Arrival date of 5 : 10

Arrival date of 1 : 11 Arrival date of 1 : 7

Arrival date of 5 : 10
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Results

Our goal: to minimize the maximum arrival date:� LPT policy: ratio in �(number of packets).� SPT and LRD policies: in a tree: ratio = 2
in a ring: ratio < 3

� �( )�
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Results

Our goal: to minimize the maximum arrival date:� LPT policy: ratio in �(number of packets).� SPT and LRD policies: in a tree: ratio = 2
in a ring: ratio < 3

Our goal: to minimize the average arrival date:� LPT and LRD policies: ratio in �(number of packets).� SPT policy: in a tree: optimal
in a ring: ratio < 2
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Outline

� Context

- Classical optimization problems
- Optimization problems with independent users� Results� Scheduling

- Performance vs stability
- Performance vs truthfulness� Routing
- Performance of distributed algorithms� Future work
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Future work� Trade-off stability/performance
- In a distributed setting: solve the CKN conjecture
- In a centralized setting: is there a deterministic policy

better than LPT ?
- Mixed Nash equilibrium, correlated equilibrium

�

bi < li�
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Future work� Trade-off stability/performance
- In a distributed setting: solve the CKN conjecture
- In a centralized setting: is there a deterministic policy

better than LPT ?
- Mixed Nash equilibrium, correlated equilibrium� Truthfulness
- In a distributed setting: truthful algorithms
- Consider related machines
- Truthful algorithms when considering payments
- Truthful algorithms when a task can bid bi < li ?
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Future work� Trade-off stability/performance
- In a distributed setting: solve the CKN conjecture
- In a centralized setting: is there a deterministic policy

better than LPT ?
- Mixed Nash equilibrium, correlated equilibrium� Truthfulness
- In a distributed setting: truthful algorithms
- Consider related machines
- Truthful algorithms when considering payments
- Truthful algorithms when a task can bid bi < li ?� Distributed algorithms for a routing problem
- Several sources/destinations
- Other topologies: in any graph
- Online analysis
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Annexe
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Other problems

Examples : vehicule routing problem, traffic grooming problem,
scheduling problem.

– p.52



Other problems

Examples : vehicule routing problem, traffic grooming problem,
scheduling problem.

1

4

3

6

7

2

5

8

9

depot

– p.52



Other problems
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Other problems

Examples : vehicule routing problem, traffic grooming problem,
scheduling problem.

Topology Traffic Matrix (requests)

e2

e1

r1

r2

r3

hub

V1

e3

V2

number of links = 2, capacity of each link = 10

T = 0B� 9 8 20 2 05 7 4
1CA
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Other problems

Examples : vehicule routing problem, traffic grooming problem,
scheduling problem.
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Other problems

Examples : vehicule routing problem, traffic grooming problem,
scheduling problem.
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Other problems

Examples : vehicule routing problem, traffic grooming problem,
scheduling problem.
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Other problems

Examples : vehicule routing problem, traffic grooming problem,
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