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Séminaire ID
Grenoble – November 23rd 2006



Time-indexed
formulations

for E/T
scheduling

Francis Sourd

Introduction

Problem
definition

Polynomial cases

Lower bounds

IP with
assignment
variables

IP with end time
variables

Relationship
between the two
models

Improved
lower bound

Cut of
dominated
solutions

Lagrangean
subproblem

Applications

Common due
date

General due
dates

Ordonnancement Avance-Retard

I n tâches à ordonnancer
sur une machine

I Chaque tâche Ji a une
durée pi

I Chaque tâche Ji a une
date d’échéance di

I Objectif : déterminer les
dates d’exécution Ci des
tâches afin d’optimiser le
critère avance-retard;
pénalités par unité de
temps: αi et βi
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Modélisation Juste-à-Temps

I n tâches à ordonnancer sur
une machine

I Chaque tâche Ji a une
durée pi

I Chaque tâche Ji a une
date d’échéance di

I Objectif : déterminer les
dates d’exécution Ci des
tâches afin d’optimiser le
critère avance-retard;
pénalités par unité de
temps: αi et βi

Ji

pi

t

coût
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Tâche à l’heure

La tâche Ji est à l’heure Ci = di

Coûts provoqués par la tâche i : 0

Ci

di

coût

fi(Ci) = αiEi + βiTi

tA l’heure
Ji
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Tâche en avance

La tâche Ji est en avance Ei = di − Ci

Coûts provoqués par la tâche i : αiEi

Ei

Ji

Ci

di

coût

fi(Ci) = αiEi + βiTi

tAvance
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Tâche en retard

La tâche Ji est en retard Ti = Ci − di

Coûts provoqués par la tâche i : βiTi

Ci

di

coût

fi(Ci) = αiEi + βiTi

tRetard
Ji

Ti
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One-machine problem with completion costs

I n jobs and one machine with a time horizon T
I processing time pi

I cost cit of job i if it completes at t.
I earliness-tardiness case: cit = fi (t)

I Size of the input is O(nT )

I Find a one-machine schedule that minimizes the total
cost.
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Theoretical results

I NP-complete even if αi = 0
I Polynomial cases

I pi = p, αi = α and βi = β
I Garey, Tarjan and Wilfong (1988)
I Verma and Dessouky (1998)

I Large common due date and αi = α and βi = β
I Kanet (1981)
I Hall and Posner (1991)

I Sequenced tasks C1 < C2 < · · · < Cn

I Garey, Tarjan and Wilfong (1988)
I Sourd (2005) for non-convex piecewise linear cost

functions
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Main lower bounds

I Unsuccessful combinatorial lower bounds
I Linear Programming based lower bounds

I xit = 1 when Ji completes at t
I Relaxing the resource constraint
I Relaxing the number of occurence of a job

I yit = 1 when Ji is in process at t
I Preemptive lower bound
I Transportation problem - Pseudopolynomial
I Continuous variant - Polynomial but slow convergence
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Assignment-based lower bound
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Assignment through a network flow problem

pi

1

1

0

c ′
it

0

Assignment costs

Assignment costs c ′it have to be defined so that we have a
lower bound.
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Defining assignment costs

Sourd and Kedad-Sidhoum (J. Sched., 2003)

Ti = 5

di − pi di

αi

βi

βi βi βi

2βi

pi = 4

t∑
t′=t−pi+1

c ′it ≤ cit
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Solving the assignment problem

I Number of time points?
I Time horizon T = max di +

∑
pi

I Pseudo-polynomial w.r.t. the input

I O(nT ) assignment arcs

I n << T : unbalanced assignment

I O(n2T ) algorithms instead of O(T 3)

I Polynomial continuous variant [Sourd, INFORMS JoC,
2004]
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IP with end time variables

I xit = 1 when Ji completes at time t

min
∑

j

∑T
t=pj

cjtxjt

s.t.
∑T

t=pj
xjt = 1 ∀ j

× µj

∑
j

∑t+pj
s=t xjs ≤ 1 ∀ t

xjt ∈ {0, 1} ∀ j , ∀ t ∈ [pj ,T ]

I Continuous relaxation
I Very good lower bound
I Very large LP. Column generation.

I Lagrangean relaxation
I of the number of occurences [Péridy, Pinson and Rivreau,

EJOR, 2003]
I of the capacity constraints [Fisher, Math. Prog., 1976]
I Integrity property
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EJOR, 2003]
I of the capacity constraints [Fisher, Math. Prog., 1976]
I Integrity property



Time-indexed
formulations

for E/T
scheduling

Francis Sourd

Introduction

Problem
definition

Polynomial cases

Lower bounds

IP with
assignment
variables

IP with end time
variables

Relationship
between the two
models

Improved
lower bound

Cut of
dominated
solutions

Lagrangean
subproblem

Applications

Common due
date

General due
dates

IP with end time variables

I xit = 1 when Ji completes at time t

min
∑

j

∑T
t=pj

cjtxjt

s.t.
∑T

t=pj
xjt = 1 ∀ j × µj∑

j

∑t+pj
s=t xjs ≤ 1 ∀ t

xjt ∈ {0, 1} ∀ j , ∀ t ∈ [pj ,T ]

I Continuous relaxation
I Very good lower bound
I Very large LP. Column generation.

I Lagrangean relaxation
I of the number of occurences [Péridy, Pinson and Rivreau,
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Relaxing the number of occurences

Locc(µ) =

min
∑

jt cjtxjt

s.t.
∑

t xjt = 1 ∀ j

×µj

∑
j s∈[t−pj ,t]

xjs ≤ m ∀ t

xjt ≤ 1 ∀ j t

Optimization of the Lagrangean problem

I Locc(µ) can be computed as a shortest path problem.

I maxµ Locc(µ) is a lower bound.

I Locc is a concave non-smooth function.
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Relaxing the number of occurences

Locc(µ) =min
∑

jt (cjt−µj)xjt+µj

s.t.

∑
t xjt = 1 ∀ j

×µj

∑
j s∈[t−pj ,t]

xjs ≤ m ∀ t

xjt ≤ 1 ∀ j t

Optimization of the Lagrangean problem

I Locc(µ) can be computed as a shortest path problem.

I maxµ Locc(µ) is a lower bound.

I Locc is a concave non-smooth function.
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Relationship between the two models

Pan & Shi, Math. Prog., 2006.

I The assignment-based LB is weaker than the linear
relaxation of the end-time based LB.

I Assignment costs are free subject to
∑t

t′=t−pi+1 c ′it ≤ cit .

I Optimizing the choice of c ′it gives an assignment LB equal
to the end-time LB.
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IP formulation of the problem

I xit = 1 when Ji completes at time t

min
∑

j

∑T
t=pj

cjtxjt

s.t.
∑T

t=pj
xjt = 1 ∀ j

× λj

∑
j

∑t+pj
s=t xjs ≤ 1 ∀ t

xjt ∈ {0, 1} ∀ j , ∀ t ∈ [pj ,T ]

I Our approach:
I Lagrangean relaxation of the number of occurences
I Péridy, Pinson and Rivreau (EJOR, 2003)
I Improving this lower bound even with greater CPU time.
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Valid Cut: Swap

t − pi + pj

Ji Jj

t t + pj

JiJj

t + pj

xit + xj ,t+pj
≤ 1 if


cit + cj ,t+pj

> cj ,t+pj−pi
+ ci ,t+pj

cit + cj ,t+pj
= cj ,t+pj−pi

+ ci ,t+pj

and i ≥ j
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Valid Cut: job repetition

Jj Jj

t t + pj

xjt + xj ,t+pj
≤ 1 ∀j ∀t



Time-indexed
formulations

for E/T
scheduling

Francis Sourd

Introduction

Problem
definition

Polynomial cases

Lower bounds

IP with
assignment
variables

IP with end time
variables

Relationship
between the two
models

Improved
lower bound

Cut of
dominated
solutions

Lagrangean
subproblem

Applications

Common due
date

General due
dates

Lagrangean subproblem

I Each xit is represented by one node

I A solution of the Lagrangean subproblem is a path that
traverses the nodes with xit = 1 → pseudo-schedule

I Arcs (i , t) → (i , t + pj) with cost cj ,t+pj
− λj

I O(nT ) nodes and O(n2T ) arcs

Idle

J1

J2

1 2 T

Jn
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traverses the nodes with xit = 1 → pseudo-schedule

I Arcs (i , t) → (i , t + pj) with cost cj ,t+pj
− λj

I O(nT ) nodes and O(n2T ) arcs

t + pj1 2 Tt
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Cuts in the Lagrangean subproblems

I Assume we have the cut xit + xj ,t+pj
≤ 1

I Arc (i , t) → (j , t + pj) is removed.

1 2 Tt t + pj

JjJi
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Computing the lower bound

I For some λ the shortest path in the graph gives a lower
bound.

I Computed in O(n2T ) time

I Multipliers λ are to be adjusted
I to maximize the lower bound
I subgradient method / SolvOpt

I Speed up: Arcs can be removed using reduced costs and
the upper bound.

I Very efficient in practice.
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Applications

Earliness-tardiness common due date problem
di = d
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Properties of the dominating schedules

I either

∑
i pi0

I or

0 d
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Lower bound

I A lower bound for each case, we keep the min of both
bounds.

I In each case, the graph of the Lagrangean subproblem is
simplified.

I With these simplification the Lagrangean problem can be
solved

I by dynamic programming
I in O(nT ).

I Similar to the approach of van den Akker et al (2002)
(which only consider the case where d ≥

∑
i pi .



Time-indexed
formulations

for E/T
scheduling

Francis Sourd

Introduction

Problem
definition

Polynomial cases

Lower bounds

IP with
assignment
variables

IP with end time
variables

Relationship
between the two
models

Improved
lower bound

Cut of
dominated
solutions

Lagrangean
subproblem

Applications

Common due
date

General due
dates

Instances

I Instances by Biskup and Feldmann (2001)

I Available at OR-Library (J.E. Beasley)

I n = 50, 100, 200, 500 and 1000 jobs

I Processing times of at most 20 units

I More or less restrictive due dates (factor h)

d =

⌊
h

∑
i

pi

⌋
.

I 280 instances
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Results

I The 280 instances are all solved...

I ...without any branching!

I Computational times are significantly faster than the
approach of van den Akker et al (although d is not large).

n h = 0.4 h = 0.6
% Avg Max % Avg Max

solved time time solved time time

50 100% 0.15 0,28 100% 0.14 0.21
100 100% 0.85 0.99 100% 1.08 1.92
200 100% 7.19 8.72 100% 7.83 10.9
500 100% 90.4 105 100% 98.9 139
1000 100% 794 1027 100% 915 1321
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Algorithm

I Branching scheme
I Pseudo-schedule is usually not a schedule
I Reparing the violated constraints
I Example:

I A job Ji processed several time may have different
predecessors

I Branch on the choice of the predecessor of Ji

I Heuristic for the initial upper bound
I Iterative improvement procedure
I Fast neighborhood search (Hendel & Sourd, to appear in

EJOR)
I Run the descent procedure 10 times from random initial

sequence
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Instances

I n = 20, 30, 40 and 50 jobs

I Processing times between 10 and 100
I Due date generation

I Tardiness factor τ
I Range factor ρ
I Due date in τP ± ρP/2 with P =

∑
i pi

I ρ and τ in 0.2; 0.3 ... 0.8

I 26 instances for each (n, ρ, τ)

I 5096 instances
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Run-time distribution
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Conclusion

I Conclusion
I The performance are significantly better than previous

algorithms
I Common due date
I Distinct due dates

I Good behaviour in presence of release dates

I Further work
I Improving the lower bound

I moves other than swap
I CP techniques: Shaving / Edge-finding

I New problems and constraints:
I No idle time
I Precedence graph, setups
I Difficult instances for 1|ri |

∑
wiTi
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