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Modélisation Juste-a-Temps
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One-machine problem with completion costs

v

n jobs and one machine with a time horizon T
> processing time p;
» cost ¢;; of job /i if it completes at t.
» earliness-tardiness case: ¢; = fi(t)

Size of the input is O(nT)

Find a one-machine schedule that minimizes the total
cost.

v
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Theoretical results

» NP-complete even if a; =0
» Polynomial cases
» pi=p, a=caand 5 =0
» Garey, Tarjan and Wilfong (1988)
» Verma and Dessouky (1998)
» Large common due date and o; = a and §; =
» Kanet (1981)
» Hall and Posner (1991)
» Sequenced tasks (3 < G < -+- < Gy
» Garey, Tarjan and Wilfong (1988)
» Sourd (2005) for non-convex piecewise linear cost
functions
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Main lower bounds

» Unsuccessful combinatorial lower bounds

» Linear Programming based lower bounds
» x;; = 1 when J; completes at t

>
>

Relaxing the resource constraint
Relaxing the number of occurence of a job

» yir = 1 when J; is in process at t

>
>

v

Preemptive lower bound
Transportation problem - Pseudopolynomial
Continuous variant - Polynomial but slow convergence
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Assignment through a network flow problem

Assignment costs

Assignment costs c;, have to be defined so that we have a
lower bound.



Sourd and Kedad-Sidhoum (J. Sched., 2003)
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Solving the assignment problem

v

Number of time points?

» Time horizon T = maxd; + ) _ p;
» Pseudo-polynomial w.r.t. the input

O(nT) assignment arcs
n << T: unbalanced assignment
O(n?T) algorithms instead of O(T?3)

Polynomial continuous variant [Sourd, INFORMS JoC,
2004]



» xi; = 1 when J; completes at time t

T
min > thpj Cjt Xjt
s.t.

Et-'rzpj th = 1 VJ
> Zii?’ Xs <1 Vit
the{ovl} VJ7Vt€[pJ7 T]
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IP with end time variables

» xi; = 1 when J; completes at time t
in 3 YL, G
min j t=p; GitXit

Slpxe=1 Vj

v

s.t.

2. 2

xjir € {0,1}

t+pj
s=t Xjs

Continuous relaxation
» Very good lower bound
» Very large LP. Column generation.

<1l Vt

Vj, Vite [pj, T]
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IP with end time variables

» xi; = 1 when J; completes at time t
: T
min Z_/ zt:pj cjt)(jt
T .

> Tl <1Vt
xe € {01} VjVte[p,T]

» Continuous relaxation

» Very good lower bound

» Very large LP. Column generation.
» Lagrangean relaxation

» of the number of occurences [Péridy, Pinson and Rivreau,
EJOR, 2003]
» of the capacity constraints [Fisher, Math. Prog., 1976]
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IP with end time variables

» xi; = 1 when J; completes at time t
: T
min Z_/ zt:pj cjt)(jt
T .
s.t. Zt:pj th =1 VJ

> Tl <1Vt
xe € {01} VjVte[p,T]

» Continuous relaxation
» Very good lower bound
» Very large LP. Column generation.
» Lagrangean relaxation
» of the number of occurences [Péridy, Pinson and Rivreau,
EJOR, 2003]
» of the capacity constraints [Fisher, Math. Prog., 1976]
» Integrity property
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Introduction Pan & Shi, Math. Prog., 2006.
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» xi; = 1 when J; completes at time t
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min > D emp, GitXjt

s.t. Z;r:pj xp=1 Vj
> Zg? Xs <1 Vit
xp €{0,1} V), Vte[p,T]

«O>r «Fr «=>»

« =)



IP formulation of the problem
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dominated

I » Péridy, Pinson and Rivreau (EJOR, 2003)
» Improving this lower bound even with greater CPU time.
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» Each x;; is represented by one node
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Lagrangean subproblem

» Each x;; is represented by one node

» A solution of the Lagrangean subproblem is a path that
traverses the nodes with x; = 1 — pseudo-schedule

> Arcs (i,t) — (i, t + pj) with cost ¢ t1p — A;
» O(nT) nodes and O(n?T) arcs

t t+pj
o O
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Cuts in the Lagrangean subproblems

» Assume we have the cut Xjt + Xj r4p, < 1
» Arc (i,t) — (j, t + pj) is removed.
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Computing the lower bound

» For some A the shortest path in the graph gives a lower
bound.

» Computed in O(n?T) time
» Multipliers A are to be adjusted

» to maximize the lower bound
» subgradient method / SolvOpt
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Computing the lower bound

» For some A the shortest path in the graph gives a lower
bound.

» Computed in O(n?T) time
» Multipliers A are to be adjusted

» to maximize the lower bound
» subgradient method / SolvOpt

» Speed up: Arcs can be removed using reduced costs and
the upper bound.

» Very efficient in practice.
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Lower bound

» A lower bound for each case, we keep the min of both
bounds.

» In each case, the graph of the Lagrangean subproblem is
simplified.
» With these simplification the Lagrangean problem can be
solved
» by dynamic programming
» in O(nT).
» Similar to the approach of van den Akker et al (2002)
(which only consider the case where d > 3. p;.
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e » Available at OR-Library (J.E. Beasley)
Rcbien) » n = 50, 100, 200, 500 and 1000 jobs
Liv‘ve(bo‘unds » Processing times of at most 20 units

aslnmen: » More or less restrictive due dates (factor h)
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Results

Time-indexed
formulations

for E/T » The 280 instances are all solved...

scheduling

- » ...without any branching!

oo » Computational times are significantly faster than the
Problem approach of van den Akker et al (although d is not large).

Polynomial cases

n h=0.4 h=10.6
% Avg Max % Avg Max
solved time time | solved time time
g 50 100% 0.15 0,28 | 100% 0.14 0.21
Improved 100 | 100% 0.85 0.99 | 100% 1.08 1.92
200 | 100% 7.19 8.72 | 100% 7.83 10.9
500 | 100% 90.4 105 | 100% 98.9 139
1000 | 100% 794 1027 | 100% 915 1321
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Algorithm

» Branching scheme
» Pseudo-schedule is usually not a schedule
» Reparing the violated constraints
» Example:
» A job J; processed several time may have different
predecessors
» Branch on the choice of the predecessor of J;

» Heuristic for the initial upper bound

» lterative improvement procedure

» Fast neighborhood search (Hendel & Sourd, to appear in
EJOR)

» Run the descent procedure 10 times from random initial
sequence
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Instances

v

vy

v

v

n = 20, 30, 40 and 50 jobs
Processing times between 10 and 100

Due date generation

» Tardiness factor 7
» Range factor p
» Due date in 7P £ pP/2 with P =", p;

pand 7in 0.2; 03 ... 0.8
26 instances for each (n, p, 7)
5096 instances
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Conclusion

» Conclusion

» The performance are significantly better than previous
algorithms

» Common due date
» Distinct due dates

» Good behaviour in presence of release dates

» Further work
» Improving the lower bound
» moves other than swap
» CP techniques: Shaving / Edge-finding
» New problems and constraints:
» No idle time
» Precedence graph, setups
» Difficult instances for 1|ri| > w; T;
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