LES METHODES DE POINTS
INTERIEURS

1 INTRODUCTION:

_ SIMPLEXE
- COMMENT PASSER PAR I INTERIEUR? DIFFICULTES AUX BORDS
If
- ON VA VOIR 3 METHODES

1.1 LA METHODE “AFFINE SCALING”

- CERTAINEMENT LA PLUS SIMPLE DES METHODES DE POINTS
INTERIEURS

- ELLE COMBINE SIMPLICITE AVEC DE TRES BONNES PERFOR-
MANCES EN PRATIQUE

- ON A PU OBSERVER QUE, SI ON DEMARRE D’UN POINT PRES
DE L’OPTIMUM, I’ALGO SE DEPLACE A PEU PRES LE LONG DES
ARETES DU DOMAINE.

- ELLE UTILISE L’IDEE D’OPTIMISER SUR UNE ELLIPSOIDE

1.2 LE “POTENTIAL REDUCTION ALGORITHM”

ELLE INTRODUIT UNE DEUXIEME IDEE: AU LIEU DE MESURER
LE PROGRES VERS L’OPTIMUM UNIQUEMENT EN TERME DE LA
FONCTION ECONOMIQUE, ON MESURE CE PROGRES PAR LA DIMINU-
TION D'UNE CERTAINE FONCTION POTENTIELLE NON LINEAIRE

CETTE FONCTION ESSAIE D’EQUILIBRER DEUX OBJECTIFS A
PRIORI CONTRADICTOIRS:

1. DIMINUER LA VALEUR DE LA FONCTION ECONOMIQUE et
2. RESTER LOIN DE LA FRONTIERE DU DOMAINE

LES “PATH FOLLOWING ALGORITHMS”

FAMILLE D’ALGORITHMES QUI ALLIENT DE BONNES PERFORMANCES
THEORIQUES ET PRATIQUES. ELLES SONT FONDEES SUR 3 IDEES:



1. TRANSFORME LE PROGRAMME LINEAIRE EN UN PROBLEME
NON CONTRAINT EN INCORPORANT LES CONTRAINTES DANS
UNE FONCTION
“BARRIERE LOGARITHMIQUE” QUI IMPOSE UNE PENALITE
QUI VA EN CROISSANT AU FUR ET A MESURE QUE L’ON
S’APPROCHE DE LA FRONTIERE DU DOMAINE (tres similaire

a ce qui est fait dans la méthode de réduction de potentiels).

2. ON RESOUT LE PROBLEME NON CONTRAINT DE BARRIERE
LOGARITHMIQUE DE MANIERE APPROCHEE PAR L’ALGO-
RITHME DE NEWTON

3. AU FUR ET A MESURE QUE LA FORCE DE LA FONCTION DE
BARRIERE EST DIMINUEE, ’OPTIMUM DU PROBLEME NON
CONTRAINT SUIT UN CERTAIN CHEMIN QUI ABOUTIT SUR
UNE SOLUTION OPTIMALE

2 LA METHODE “AFFINE SCALING”

On omettra le symbole qui represente la transposition d’une matrice sauf
si cela peut preter & confusion et alors on note A! la transposé de A. Les
vecteurs sont donc consideres comme des matrices ligne ou/et colonne suivant
les cas.

Soit le PL suivant:

minimiser c.T

sujet a: Az =

et son dual:

maximiser  p.b

sujet a: pA<c

ol A est une matrice mXn.
P ={x:Ax =b,x > 0} est I'ensemble des solutions réalisables et {z € P :
x > 0} est linterieur de P, ses éléments sont des points intérieurs

IDEE CENTRALE: minimiser cx pour x € P peut étre difficile, par con-
tre il est TRES FACILE de minimiser cx pour x appartenant a une ellipsoide
et de plus la solution possede une forme analytique. Donc au lieu de résoudre



directement sur P on va résoudre une suite de problemes d’optimisation sur
des ellipsoides.

- On commence en un point x°

> (0 a l'intérieur de P. On forme une

ellipsoide Sy centrée en 2% et contenue dans l'intérieur de P. On optimise cx

pour z € Sy ce qui donne un autre point intérieur !
1

- On construit une autre ellipsoide centrée en x

Ici ' minimise cx pour = dans lellipsoide centrée en z°, z? minimise cz

pour = dans 'ellipsoide centrée en z! .. ..
Lemme 1 Soit 5 € (0,1) ety € R" tel que y > 0 et soit:

n )2
S:{xeR":Z(x’T‘%)gﬁz}
=1 4

Alors x > 0 pour tout x € S.



Preuve. Soit x € S. Pour tout ¢ on a:
(r; — ;) < ﬁny < yf et donc | z; —y; |< ;. Six; —y; > 0on abien x; > 0,
sinon —x; +y; < y; et donc x; > 0. O

Fixons y € R" tel que y > 0 et Ay = b. Soit Y = diag(y1,...,¥n)
la matrice diagonale dont les termes de la diagonale sont y1,...,y,. Y est
inversible puisque les termes de la diagonales sont strictement positifs. Alors
la relation x € S peut s’écrire
| Y7z —y) [|[< B ou || . || représente la norme euclidienne. IL’ensemble
S est une ellipsoide centrée en y. L’ensemble Sp = SN {x : Ax = b} est
une section de l'ellipsoide S et est lui méme une ellipsoide contenue dans le
domaine des solutions réalisables.

On va minimiser sur Sy:

minimiser cT
sujet a:  Axr =0b
1Yz —y) [I< 6

Posons d = x — y. On a Ay = b et pour tout x € Sy on a aussi Ax = b,
donc Ad = 0. Si on optimise sur d au lieu de x on a:

minimiser  ¢d (1)
sujet a2 Ad=0
Iy=d|<s

Lemme 2 Supposons que les lignes de A sont linéairement indépendentes et
que ¢ n’est pas une combinaison linéaire des lignes de A. Soit y un vecteur
strictement positif, alors une solution optimale du probleme (1) est donnée
par:

*x YQ(C*AtP)
d* = 5IIY(c—Atp)II

ou
p=(AY2AH LAY ?c
De plus le vecteur v =y + d* € P et:
cx=cy—pB[|Y(c—Ap)[<cy
Preuve. Pas donnée, mais a peine une page et sans difficulté majeure. 0O

interprétation de la formule de p: Supposons que y soit une solution
de base non dégénérée (ce qui n’est jamais le cas). Supposons que les m
premieres variables sont de base, alors A = [B NJ.

4



SiY =diag(y1, .-, Ym,0,...,0) et
Yo = diag(y1, - . ., ym) alors AY = [BY; 0] et

p = (AYZAH)'AY?c
_ (Bt)fli/O72Ble}/02cB
= (B") 'ep (2)

et donc p correspond a la solution duale de base correspondante. c’est
pourquoi on applelle p les estimations du dual. De plus r = ¢ — Alp de-
vient r = ¢ — AY(B%)"lcp qui est le vecteur des cotits réduits du simplexe.
Supposons r non négatif, alors p est dual réalisable et r'y = (¢ — A'p)y =
cly —pt Ay = cty — p'b la différence des valeurs des fonctions économiques du
primal et du dual, appelé saut de dualité

Lemme 3 Soienty et p des solutions respectivement primale et duale réalisables
telles que cy — bp < €

Soient y* et p* les solutions respectivement primale et duale optimales,
alors:

cy <cy<cy*+e

bp* —e < bp < bp*

Preuve. Puisque y est réalisable on a cy* < cy. Par dualité bp < cy*.
Puisque cy — bp < €, nous avons: cy < bp + € < cy* + €.
De méme on obtient: bp* = cy* <cy <bp+e€ O

Remarque 1 Si d* > 0, le domaine des solutions du probléme initial est
non borné puisque x + ad* > 0 pour tout a > 0 et Ad* = 0. Puisque cd < 0
il en découle que le probleme initial n’a pas de solution optimale finie.

Ceci suggere un critere d’arrét. On s’arréte quand r = ¢ — Alp > 0

(solution duale réalisable) et r'y = y'r = e'Yr est petit, ot e = (1,1,...,1).
Le “Affine Scaling Algorithm” prend en entrée:

(a) Les données: (A, b, c);
(

)
b) Une solution réalisable de départ z° > 0;
(¢) Une tolérance € > 0;

)

(d) Le parametre 3 € (0, 1).
1. (initialisation) On démarre avec une solution réalisable z° > 0, k = 0;

bt



2. (Calcul des valeurs approchées du dual et des couts réduits). Soit
z¥ > 0 réalisable:

Xp = diag(ah, ... 2F)

PP = (AXPANTTAXc

rFo= c— ApF

3. (test d’optimalité) Soit e = (1,...,1). Si 7% >0 et ! X1k <€, STOP,
2" et p* sont e-optimales du primal et du dual resp.

4. (test de non “finitude”) Si —X2r* > 0, STOP solution optimale non
finie.

5. (mise a jour de la solution primale) Poser:

2.k
Xir

k+1 k
=" - f——
| X |

(3)

2.1 VARIANTES DE ’ALGORITHME

Celles-ci different dans le choix de la longueur du pas. Etant donné un vecteur
u on définit:

o 11 o= max; | ;|
o y(u) = max{u; : u; > 0}
Il est facile de vérifier que:

Y(w) <[l w lo <l w |l

La version de 'algorithme que nous avons présentée est dite a pas courts.
Dans les versions a pas long la mise a jour de la solution primale est remplacée
par:

X 2pk
=gk kz
I Xer* oo
ou -
X
gF = gk 3 k" .
7 (Xr)

Cette derniere est la plus utilisée car elle donne le pas le plus long et donc
la décroissance la plus forte de la fonction économique. Dans tous les cas on
peut montrer que zFt! > 0 et réalisable.

A ce point on peut on peut se poser plusieurs QUESTIONS



(a) L’algorithme se termine-t-il?

(b) Comment démarre-t-on?

¢) Comment I’algorithme se comporte-t-il en pratique?
C t I’algorith porte-t-il en pratique?

Il existe des théoremes de convergence sur lesquels nous ne nous at-
tarderons pas.

Pour démarrer on peut, par exemple, créer une nouvelle variable x,,
et une nouvelle colonne A, ;3 = b— Ae ou e = (1,...,1), et considérer le
probleme:

minimiser  cx + Mz,
sujet & Ar+ (b— Ae)r,i =0
(SU, anrl) Z 0

ou M est un grand nombre positif. Or (e, 1) est une solution réalisable de ce
probleme, et si M est assez grand, dans la solution optimale on a x,,; =0
et donc cette solution optimale peut servir pour demarrer I'algorithme.

2.2 Performances pratiques

Le point critique est le calcul, & chaque itération de la matrice AXZA" qui
nécessite O(m?n) opérations, puis il faut résoudre un systeéme linéaire, de ma-
trice AX? A, ce qui prend O(m?) opérations, donc chaque itération nécessite
O(m?n + m?®) opérations et comme m < n au total on a au plus O(n?)
opérations par itération.

On a pu observer que si on démarre pres de 'optimum, alors I’algorithme
se comporte presque comme le simplexe et fait de petits pas car les ellipses
sont petites. Par contre si on démarre loin, il fait de gros progres vers
I'optimum. C’est donc un bon candidat pour un algorithme mixte points
intérieurs-simplexe (cf plus loin).

Exemple numérique 1:

maximiser x; + 2o

sujet a: (4)
Ty + T2 < 2
—T1 + T < 1
T1, Xo > 0

Apres addition de variables d’écart et transformation en un probleme de
minimisation:



minimiser -1 — 229

sujet a: T+ T9 + 23 =2

—T1+x9 +xy =1

X1,T2,T3, T4 Z 0
T .100 .144 .198 .262 0.364 0.530 0.546 0.499
To .100 .188 .359 667 1.068 1.339 1.439 1.491

Résultats d’itérations consécutives de la version “pas courts” avec [ =
0,995. La solution optimale est 27 = 1/2 et a5 = 3/2.
x; A
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3 LE “POTENTIAL REDUCTION ALGO-
RITHM?”

Soit le PL suivant:

minimiser cx
sujet a: Axr =0b
z >0

et son dual:

maximiser  pb
sujet a:  pA+s=c
s>0

avec I’hypothese suivante:

Hypothese 1 La matrice A a ses lignes linéairement indépendentes et il
existe © > 0 et (p, s) avec s > 0, qui sont réalisables pour le primal et le dual
respectivement.

Le “affine scaling” algorithme décroissait strictement la fonction économique
a chaque itération. Le résultat est que la séquence de solutions approche tres
rapidement de la frontiere du domaine et a partir de la les progres sont lents
puisque les ellipsoides sont de plus en plus petites. Une solution est d’essayer
de repousser les solutions de la frontiere du domaine de fagon a pouvoir
continuer a faire des progres significatifs.

On introduit la fonction potentielle G(z, s)

G(z,s) = qlogs.x — Zlog:cj - Zlog s;
=1 j=1

ol ¢ est une constante plus grande que n. Si x et (p, s) sont réalisables du
primal et du dual resp.

cx—bp=(s+pA)x—2'Ap = sz

Donc le premier terme mesure le saut de dualité, les deux autres termes
pénalisent la proximité de la fontiere du domaine pour la solution primale et
duale respectivement.

Le théoreme suivant montre que si on peut décroitre, a chaque itération,
la valeur de la fonction potentielle G(z, s) d'une certaine quantité, on peut
garantir d’obtenir une solution e-optimale apre un petit nombre d’itérations.



Theoréme 4 Soient 2° > 0 et (p°,s%) avec s° > 0, des solutions resp. pri-
male et duale réalisables. Soit € > 0 le seuil de tolérance pour l’optimum.
Tout algorithme qui conserve la réalisabilité primale et duale et qui fait
décroitre G(z, s) d’une quantité supérieure ou égale a 6 > 0 a chaque itération,
trouve une solution des problemes primal et du dual de saut dual:

sE ol <e

apres au plus

[G(xo, s%) + (g —n)log(1/e) — nlogn-‘
K =
0
itérations
Preuve. On a:
G(z,s) = qlogsxz— Zloga:j — ZlogSj
j=1 j=1

n n
= nlogsx—Zloga:j —ZlogsJ- + (¢ —n)log sz
j=1 j=1

Y

nlogn + (¢ — n)log sz (5)

n n . .« .
Car nlogsz — > 7 logz; — 37 logs; atteint son minimum quand z;s; =
sz /n, ce qui peut étre vu en annulant la dérivée et en vérifiant que la dérivée
seconde est non négative. Donc,

n n
nlogsfoIngjfZlogSjanogn (6)
J=1 J=1

Soit § > 0 fixé et supposons que nous avons un algorithme qui a la propriété
que:
G(z* 1, s+ — G(zF, s*) < -6, Vk

Apres K itérations on a:
G(=¥,s%) - G20, s°) < —Ka.
Pour la valeur de K du théoreme on a
G(=E,s%) < 7(q7n)log%+nlogn
En utilisant 'inégalité (5), on a le saut de dualité en dessous du seuil desiré.

sK K <e
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Ce théoreme nous incite a construire un algorithme qui decroit la fonction
potentielle G(z, s) d’au moins une constante a chaque itération. C’est pour
cette raison que 'algorithme que nous allons décrire s’appelle “de réduction
de potentiel”.

Intuitivement, 1'idée centrale est la suivante: En partant d’une solution
réalisable x > 0 du primal et d’une solution réalisable du dual avec s > 0, on
cherche une direction d telle que G(z + d, s) < G(z,s). La direction d doit
satisfaire:

Ad=0, | X" Md|<B<1
de facon a ce que z+d soit réalisable, comme vu dans la méthode “affine scal-
ing”. Le probleme de minimiser G(x + d, s) sous les contraintes précédentes
est un probleme non linéaire tres difficile. Pour cette raison, on approxime la
fonction potentiel G(x + d, s) par son développement de Taylor au premier
ordre et on résout le probleme suivant:

minimiser V:G(zx, s)td
sujet a Ad=0
| X~ 'd|<B

Le probleme est exactement le méme que celui rencontré dans la méthode
précédente, sauf pour la fonction économique dont les coeffs sont ¢ = V,G(x, s)
au lieu de ¢, i.e.

. OG(x,s) gs; 1

Ci

ox; sT T;
Donc en appliquant le Lemme 2 on obtient:

u

d* = —BX
[l
ou:
u=X(&—A'(AX2AH"TAX2¢e)

Puisque:

Xe=Lxs e

ST

on obtient:

u=(I— XA'(AX2A") "1 AX) (iXs =

De plus, G(z,s) décroit de 3 || u || +O(B?), ol le premier terme vient du
Lemme 2 et le deuxieme est di aux termes d’ordre supérieurs omis dans le
développement de Taylor de G(z, s).

En bornant soigneusement les termes d’ordre supérieurs,on peut montrer
que si || u ||> 7, pour un v donné, alors la fonction potentiel diminue d’au
moins une valeur constante.

Remarquez que dans une telle itération ni s ni p ne sont modifiés. Cepen-
dant, si || u ||< 7y, on ne peut pas decroitre suffisemment la fonction potentiel,
dans ce cas on change les variables duales pour obtenir la décroissance voulue.

L’algorithme prend en entrée:
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1. (initialisation) On démarre avec une solution réalisable 2° > 0,5° > 0, p. Poser k = 0;
2. (test d’optimalité) Si s*.z* < e STOP

3. (Calcul de la direction).

Xy = diag(a},...,ak)
A¥ = (AXp)H(AX2AY)TTAX,
ko _ —k q
ut = (I-A") (Wstk — e)
d* = —BXpu/ | W |

4. (itération primale) Si || u* ||> =, poser:

N
k1 — gk
PRl = pF
5. (itération duale) Si || u® ||< ~, poser:
U
k .k
st
FLARI X;l(ukJre)
q
sP.ak
PPt = pP 4 (AXEAYHTAX,, (st’“f e)
q

6. Poser k=k+1 et retourner en (2).

On peut montrer que z* et (p*, s¥) sont toujours primale et duale réalisables.
Il n’y a malheureusement pas d’interprétation intuitive de l'itération duale.
Nous terminerons par le théoreme suivant qui montre que la décroissance
voulue peut étre atteinte:

Theoreme 5 L’algorithme avec 3 < 1 ety <1 a les propriétés suivantes:

(a) Si || u* ||> (itération primale), alors

G(l‘k+1,$s+1) _ G($k7l‘s) < —By+ 2(15—_25)
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(b) Si || u* ||< v (itération duale), alors:

2
G(l‘k+1,$s+1) _ G($k7l‘s) < _(q _ n) +n% + ﬁ

(¢c) Siqg=n++/n, 8~ 0,285 et v = 0,479, alors l'algorithme décroit
G(z,s) d’au moins 6 = 0,079 a chaque itération.

Preuve. Démonstration longue et fastidueuse. O

Initialisation
On montre dans cette section comment initialiser. On considere le pro-
gramme artificiel:

minimiser cx + Myx, 4
sujet a:  Ax 4+ (b— Ae)x,p1 =D
(e—c)x+ p0= M

Tlyee &g >0
et son dual:

maximiser  pb + p1 Mo
sujet &1 pA+puale—c)+s=c
p.(b— Ae) + sp11 = M,
Pmt1 + Spg2 =0
51y 8Spt2 >0

Les variables x,, 1, Tpi2, Pma1, Sni1 €t S,io sont des variables artificielles,
My et M, sont grands et spécifiés plus loin. On doit avoir:
My > (e —c¢).e.
Les vecteurs:
(2% 20 1,20, ,) = (e,1, My — (e — ¢).e
0,0 0 .0 0
(p ’pm—f—l’ S sn—i-l’ Sn+2) = (07 _17 €, Mla ]-)
sont réalisables pour les problemes artificiaux primal et dual resp. et peuvent

étre utilisés pour démarrer I'algorithme de réduction de potentiel. La relation
entre le probleme initial et le probleme artificiel est donnée par:

Theoréme 6 Soient z* et (p*,s*) des solutions optimales du primal et du
dual resp., dont l’existence qui est supposée. Si:

M, > max{(b — Ae)'p*,0} + 1
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et:
My > max{(e — ¢)'z*, (e — ¢)’e,0} + 1

alors:

1. Une solution réalisable (T, Ty 1, Tnya) du probléme artificiel primal est
optimale ssi T est optimale du probleme initial et T,,.1 = 0

2. Une solution réalisable (P, Py 1,5, Sn+1, Snt2) du probléme artificiel dual
est une solution optimale ssi (P, S) est optimale du probléme dual initial

et ﬁm—f—l =0

Preuve. (1) Soit (T,Z,41,Tnie) une solution optimale du probléme artifi-
ciel primal. Supposons que T,;; > 0. A partir de 2* définissons la solu-
tion réalisable suivante du probleme artificiel primal, en posant x} ;= 0 et

* _ *
Th, o= My — (e —c).x*. Alors
c.z* + Mixxn+1 = p*.b =p*. (AT + (b — Ae)Tpn+1)

Puisque (p*)!A+ (s*)! = ', Tpy1 > 0 et
M; > (b— Ae)'p* on a:

cx* + Mlzv:L_H < (c— s)ti + MiTn41 < T+ MiTn41

parce que s*.T > 0, ce qui contredit l'optimalité de (T,ZT,11,Tpni2). De
plus, I'inégalité précédente montre que (z*, x5, ), ,) est optimale pour
le probleme artificiel primal et que sa valeur est ¢.T = c.x*. Puisque T est
réalisable, elle est optimale pour le probleme primal original.
Réciproquement, soitx* une solution optimale du primal original. Alors
(T, Tps1, Tnio) avec T = a*, Tpy1 = 0, Tpao = My — (e — ¢).o* est réalisable
pour le primal artificiel. Sa valeur ¢.x + M;T,,; coincide avec sa valeur
optimale c.z* + Mz}, ; et donc est optimale du primal artificiel. [

3.1 Complexité de I’algorithme

On suppose que A, b et ¢ ont des composantes entieres dont les valeurs
absolues sont bornées par U. Nous n’entrerons pas dans les détails. Il est
clair que la valeur de la solution initiale compte. On peut montrer que

G(2°, %) = O (gnlog(nU)). D’apres les théoremes 4 et 5 avec ¢ = n + \/n
et la valeur G(2°, s°) ci-dessus, on peut conclure que 1'algorithme trouve des
solutions z€ et s avec un saut de dualité:

(s%).z¥ <e (7)

apres:
K=0 (\/ﬁlog % +n? log(nU)) (8)

14



itérations.
Chaque itération nécessite O(nm?+m?) opérations arithmétiques. Comme

m < n, on a au plus O(n?) opérations arithmétiques. Donc l'algorithme
trouve une solution e-optimale en:

1
0 (n3'5 log - +n’ log(nU)) 9)

opérations arithmétiques. Notez que cet algorithm est POLYNOMIAL. 11
y a des améliorations pour accélélerer la convergence.

4 LE “PRIMAL PATH FOLLOWING AL-
GORITHM”

C’est la méthode qui semble la plus employée et la plus expérimentée. Elle
donne de tres bons résultats tant théoriques que pratiques.
Cet algorithme résoud le PL suivant:

minimiser c.T

sujet a:  Axr =

et son dual:

maximiser  p.b
sujet a:  pA+s=c
s>0

Une des idées derriere cette méthode est l'observation qu'une des difficultés
de la programmation linéaire provient des inéquations z > 0. En effet les
variables non astreintes, une fois dans la base, n’en sortent jamais et de plus
des qu’un cout réduit est non nul dans la fonction économique, elle peut entrer
dans la base. Pour cette raison on va convertir le PL en un probleme avec
seulement des équations, en utilisant une fonction barriére qui va empécher
une variable d’atteindre la frontiere z; = 0. On y parvient en ajoutant les
termes —log z; a la fonction économique. Ces termes vont faire augmenter
cette fonction vers +0o quand z; va tendre vers 0. Nous introduisons la
fonction barriére suivante:

B,(z) = cx — MZ log x;
i=1
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supposée valoir I'infini si ; < 0 pour au moins un j. On considere la famille
de programmes non linéaires (dits problémes barriéres) suivante:

minimiser B, () (10)

sujet a:  Azr=0b

Supposons que pour chaque g > 0, le probleme barriere possede une
solution optimale x(i). (On peut facilement montrer que ce probleme ne
peut pas avoir de solutions optimales multiples car le domaine est strictement
convexe.) Au fur et a mesure que p varie, les solutions x(u) successives
forment le “chemin central” (“central path”). Celui-ci est illustré sur la
figure suivante.

On peut montrer que lim, o x(p) existe et est une solution optimale z*

du programme linéaire initial. L’idée intuitive est que quand u est tres petit,
le terme logarithmique est négligeable presque partout, mais il nous empéche
quand méme d’atterrir sur la frontiere.

Un probleme barriere ayant comme origine le dual est le suivant:

maximiser  p.b+p Z log s, (11)
j=1
sujet a:  pA+s=c

Soient p(p), s(p) une solution optimale de ce probleme (11) pour p > 0.
Les problemes (10) et (11) sont des problemes d’optimisation convexe, c.a d.
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que l'on optimise une fonction convexe sous des contraintes qui définissent

un ensemble convexe (ici des inéquations linéaires). Il existe des conditions

similaires aux écarts complémentaires de la programmation linéaire, ce sont

les conditions de Karush-Kuhn-Tucker. Elles sont nécessaires et suffisantes

pour que des solutions soient optimales pour les problemes (10) et (11)
Conditions de KKT:

Az(p) = b
a(p) = 0

A'p(p) +s(p) = ¢ (12)
s(p) = 0
X(p)S(pe = ep

ot X(u) = diag(w1(p), ..., xn(p)) et S(u) = diag(si(p), - .., sn(p)). Noter
que si = 0, alors ce sont les conditions du théoréme des écarts complémentaires.

Lemme 7 Siz*, p* et s* satisfont les condition (12), alors ils sont solutions
optimales des probléemes (10) et (11), c.a d.

*

et =ax(p), p=p), s =s(p)

Preuve. Démonstration tres facile. O
Si p = o0, le probleme devient:

n
minimiser — Z log x5
Jj=1
sujet a: Ax=b

et sa solution optimale s’appelle le centre analytique du domaine des solu-
tions.
Exemple numérique 2: Considérons le probleme:

minimiser T

sujet a: z>0
La fonction barriére est dans ce cas:
B,x =x — plogx (13)

et la solution optimale est xz(u) = p, et quand g — 0, la solution tend vers
la solution optimale z* = 0
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Exemple numérique 3: (Calcul du chemin central)
minimiser T
sujet a: 1+ 1o +a3=1
x1,T2,73 > 0
Pour calculer le chemin central on doit résoudre:
minimiser  xy — plogxy — plogzs — plogxs
sujet a: T+ T +a3=1

En substituant x3 = 1 — 1 — x5, on doit résoudre le probleme non linéaire
non contraint suivant:

min xe — plogxy — plogxe — plog(l — xq — x9)
En annulant les dérivées on trouve:

o) = 2

. 1+3u—\/1+9u2+2u
za(p) = 5
mo) = L2

2

Le centre analytique est trouvé en faisant z — oco. C’et le point (1/3,1/3,1/3).
L’ensemble des solutions optimales du programme linéaire est:

Q={z:z=(21,0,23), 21+ 23 =1,2 > 0}

dont le centre analytique est (1/2,0,1/2), qui est le point obtenu si on pose
i = 0. Le chemin central aboutit sur le centre analytique des solutions
optimales.

Remarque 2 Le centre analytique n’est pas une notion géométrique, elle
déepend des inéquations utilisées pour décrire le domaine des solutions. Le
rajout d’une contrainte redondante change ce centre.

Le probleme barriere est tres dificile a résoudre parce que sa fonction
économique n’est ni linéaire ni quadratique. Pour cela on approxime B, (z)
autour d’un point donné x par les trois premiers termes de son développement
de Taylor. On a:

9By(x) — .k
a.CCZ' ! xX;
PBu(x) L
Ox? n x?
9*B,,(x) o,
8:ci6:cj 0’ ! 7é J
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Etant donné un vecteur z > 0, le développement de Taylor de la fonction
barriere est:

OBu( 8%B(x
Bu(z +d) = Bu(z +Z 85ule) 5 Z Om gi idj
10T

= Bu(z) + (c — peX~H)d + 5,uth_2d

Alors au lieu de minimiser la fonction barriere, on va chercher une direc-
tion d qui minimise le développement de Taylor de B,(x + d). Le probleme
d’approximation devient:

1
minimiser (¢ — peX ')d + éuthfzd
sujet a: Ad=0

Ce probleme peut étre résolu de fagon analytique en utilisant les multipli-
cateurs lagrangiens. On associe un vecteur p de multiplicateurs de lagrange
aux contraintes Ad = 0 et on forme la fonction de Lagrange:

1
L(d,p) = (" — pe! X Y)d + éuth_Qd — p'Ad

et on veut
OL(d,p) _, OLW.p) _
dd; ’ p;
ce qui donne:
c—puXte+puX2d—-Ap = 0
Ad = 0

C’est un systeme linéaire de m + n équations a m + n inconnues (les d;
et les p;) dont la solution est:

d(p) = (I - X2AN(AX?AYTA)(Xe — %X%)
p(p) = (AX?AN)'A) (X% — pXe)

Le vecteur d(u) s’appelle la direction de Newton et son calcul s’appelle une
itération de Newton.

La solution = devient =+ d(u) et la solution duale (p, s) devient (p(u), c—
A'p(u)). Puis on decroit p a i = ap, on 0 < a < 1 est fixé une fois pour
toute.

En résumé la méthode est: 1) (Initialisation) Partir de solutions primale
et duale réalisables 2° > 0, s° > 0 et p°. k = 0.
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2) (test d’optimalité) Si s*.2% < e STOP
3) Soit:

~ k k
Xy = diag(zy,... )
k+1 k

Pt = ap
4) (calcul des directions) Résoudre le systeme linéaire:
,uk-f-le—Qd o Atp — Mk-i—le—le —c
Ad = 0

pour trouver p et d
5) (mise a jour des solutions) Poser:

S
M=
s = c— Alp

k=k+1, aller en 2.
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