
LES METHODES DE POINTS

INTERIEURS

1 INTRODUCTION:

- SIMPLEXE
- COMMENT PASSER PAR L’INTERIEUR? DIFFICULTES AUX BORDS

!!!
- ON VA VOIR 3 METHODES

1.1 LA METHODE “AFFINE SCALING”

- CERTAINEMENT LA PLUS SIMPLE DES METHODES DE POINTS
INTERIEURS

- ELLE COMBINE SIMPLICITE AVEC DE TRES BONNES PERFOR-
MANCES EN PRATIQUE

- ON A PU OBSERVER QUE, SI ON DEMARRE D’UN POINT PRES
DE L’OPTIMUM, L’ALGO SE DEPLACE A PEU PRES LE LONG DES
ARETES DU DOMAINE.

- ELLE UTILISE L’IDEE D’OPTIMISER SUR UNE ELLIPSOÏDE

1.2 LE “POTENTIAL REDUCTION ALGORITHM”

ELLE INTRODUIT UNE DEUXIEME IDEE: AU LIEU DE MESURER
LE PROGRES VERS L’OPTIMUM UNIQUEMENT EN TERME DE LA
FONCTION ECONOMIQUE, ON MESURE CE PROGRES PAR LA DIMINU-
TION D’UNE CERTAINE FONCTION POTENTIELLE NON LINEAIRE

CETTE FONCTION ESSAIE D’EQUILIBRER DEUX OBJECTIFS A
PRIORI CONTRADICTOIRS:

1. DIMINUER LA VALEUR DE LA FONCTION ECONOMIQUE et

2. RESTER LOIN DE LA FRONTIERE DU DOMAINE

LES “PATH FOLLOWING ALGORITHMS”

FAMILLE D’ALGORITHMES QUI ALLIENT DE BONNES PERFORMANCES
THEORIQUES ET PRATIQUES. ELLES SONT FONDEES SUR 3 IDEES:
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1. TRANSFORME LE PROGRAMME LINEAIRE EN UN PROBLEME
NON CONTRAINT EN INCORPORANT LES CONTRAINTES DANS
UNE FONCTION
“BARRIERE LOGARITHMIQUE” QUI IMPOSE UNE PENALITE
QUI VA EN CROISSANT AU FUR ET A MESURE QUE L’ON
S’APPROCHE DE LA FRONTIERE DU DOMAINE (très similaire
à ce qui est fait dans la méthode de réduction de potentiels).

2. ON RESOUT LE PROBLEME NON CONTRAINT DE BARRIERE
LOGARITHMIQUE DE MANIERE APPROCHEE PAR L’ALGO-
RITHME DE NEWTON

3. AU FUR ET A MESURE QUE LA FORCE DE LA FONCTION DE
BARRIERE EST DIMINUEE, L’OPTIMUM DU PROBLEME NON
CONTRAINT SUIT UN CERTAIN CHEMIN QUI ABOUTIT SUR
UNE SOLUTION OPTIMALE

2 LA METHODE “AFFINE SCALING”

On omettra le symbole qui represente la transposition d’une matrice sauf
si cela peut prèter à confusion et alors on note At la transposé de A. Les
vecteurs sont donc consideres comme des matrices ligne ou/et colonne suivant
les cas.

Soit le PL suivant:

minimiser c.x

sujet à: Ax = b

x ≥ 0

et son dual:

maximiser p.b

sujet à: pA ≤ c

où A est une matrice mXn.
P = {x : Ax = b, x ≥ 0} est l’ensemble des solutions réalisables et {x ∈ P :
x > 0} est l’interieur de P , ses éléments sont des points intérieurs

IDEE CENTRALE: minimiser cx pour x ∈ P peut être difficile, par con-
tre il est TRES FACILE de minimiser cx pour x appartenant à une ellipsöıde
et de plus la solution possède une forme analytique. Donc au lieu de résoudre
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directement sur P on va résoudre une suite de problèmes d’optimisation sur
des ellipsöıdes.

- On commence en un point x0 > 0 à l’intérieur de P . On forme une
ellipsöıde S0 centrée en x0 et contenue dans l’intérieur de P . On optimise cx
pour x ∈ S0 ce qui donne un autre point intérieur x1

- On construit une autre ellipsöıde centrée en x1 . . .

c

x0
x1

x2
x3

Ici x1 minimise cx pour x dans l’ellipsöıde centrée en x0, x2 minimise cx
pour x dans l’ellipsöıde centrée en x1 . . . .

Lemme 1 Soit β ∈ (0, 1) et y ∈ R
n tel que y > 0 et soit:

S = {x ∈ R
n :

n
∑

i=1

(xi − yi)
2

y2
i

≤ β2}

Alors x > 0 pour tout x ∈ S.
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Preuve. Soit x ∈ S. Pour tout i on a:
(xi − yi)

2 ≤ β2y2
i < y2

i et donc | xi − yi |< yi. Si xi − yi ≥ 0 on a bien xi > 0,
sinon −xi + yi < yi et donc xi > 0.

Fixons y ∈ R
n tel que y > 0 et Ay = b. Soit Y = diag(y1, . . . , yn)

la matrice diagonale dont les termes de la diagonale sont y1, . . . , yn. Y est
inversible puisque les termes de la diagonales sont strictement positifs. Alors
la relation x ∈ S peut s’écrire
‖ Y −1(x − y) ‖≤ β où ‖ . ‖ représente la norme euclidienne. L’ensemble
S est une ellipsöıde centrée en y. L’ensemble S0 = S ∩ {x : Ax = b} est
une section de l’ellipsöıde S et est lui même une ellipsöıde contenue dans le
domaine des solutions réalisables.

On va minimiser sur S0:

minimiser cx

sujet à: Ax = b

‖ Y −1(x − y) ‖≤ β

Posons d = x − y. On a Ay = b et pour tout x ∈ S0 on a aussi Ax = b,
donc Ad = 0. Si on optimise sur d au lieu de x on a:

minimiser cd (1)

sujet à: Ad = 0

‖ Y −1d ‖≤ β

Lemme 2 Supposons que les lignes de A sont linéairement indépendentes et
que c n’est pas une combinaison linéaire des lignes de A. Soit y un vecteur
strictement positif, alors une solution optimale du problème (1) est donnée
par:

d? = −β Y 2(c−Atp)
‖Y (c−Atp)‖

où

p = (AY 2At)−1AY 2c

De plus le vecteur x = y + d? ∈ P et:
cx = cy − β ‖ Y (c − Atp) ‖< cy

Preuve. Pas donnée, mais à peine une page et sans difficulté majeure.

interprétation de la formule de p: Supposons que y soit une solution
de base non dégénérée (ce qui n’est jamais le cas). Supposons que les m
premières variables sont de base, alors A = [B N ].
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Si Y = diag(y1, . . . , ym, 0, . . . , 0) et
Y0 = diag(y1, . . . , ym) alors AY = [BY0 0] et

p = (AY 2At)−1AY 2c

= (Bt)−1Y −2
0 B−1BY 2

0 cB

= (Bt)−1cB (2)

et donc p correspond à la solution duale de base correspondante. c’est
pourquoi on applelle p les estimations du dual. De plus r = c − Atp de-
vient r = c − At(Bt)−1cB qui est le vecteur des coûts réduits du simplexe.
Supposons r non négatif, alors p est dual réalisable et rty = (c − Atp)y =
cty− ptAy = cty− ptb la différence des valeurs des fonctions économiques du
primal et du dual, appelé saut de dualité

Lemme 3 Soient y et p des solutions respectivement primale et duale réalisables
telles que cy − bp < ε

Soient y? et p? les solutions respectivement primale et duale optimales,
alors:

cy? ≤ cy < cy? + ε
bp? − ε < bp ≤ bp?

Preuve. Puisque y est réalisable on a cy? ≤ cy. Par dualité bp ≤ cy?.
Puisque cy − bp < ε, nous avons: cy < bp + ε ≤ cy? + ε.

De même on obtient: bp? = cy? ≤ cy < bp + ε

Remarque 1 Si d? ≥ 0, le domaine des solutions du problème initial est
non borné puisque x + αd? > 0 pour tout α > 0 et Ad? = 0. Puisque cd < 0
il en découle que le problème initial n’a pas de solution optimale finie.

Ceci suggère un critère d’arrêt. On s’arrête quand r = c − Atp ≥ 0
(solution duale réalisable) et rty = ytr = etY r est petit, où e = (1, 1, . . . , 1).

Le “Affine Scaling Algorithm” prend en entrée:

(a) Les données: (A, b, c);

(b) Une solution réalisable de départ x0 > 0;

(c) Une tolérance ε > 0;

(d) Le paramètre β ∈ (0, 1).

1. (initialisation) On démarre avec une solution réalisable x0 > 0, k = 0;
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2. (Calcul des valeurs approchées du dual et des coûts réduits). Soit
xk > 0 réalisable:

Xk = diag(xk
1, . . . , x

k
n)

pk = (AX2
kAt)−1AX2

kc

rk = c − Atpk

3. (test d’optimalité) Soit e = (1, . . . , 1). Si rk ≥ 0 et etXkr
k < ε, STOP,

xk et pk sont ε-optimales du primal et du dual resp.

4. (test de non “finitude”) Si −X2
krk ≥ 0, STOP solution optimale non

finie.

5. (mise à jour de la solution primale) Poser:

xk+1 = xk − β
X2

krk

‖ Xkrk ‖ (3)

2.1 VARIANTES DE L’ALGORITHME

Celles-ci diffèrent dans le choix de la longueur du pas. Etant donné un vecteur
u on définit:

• ‖ u ‖∞= maxi | ui |

• γ(u) = max{ui : ui > 0}

Il est facile de vérifier que:

γ(u) ≤‖ u ‖∞≤‖ u ‖

La version de l’algorithme que nous avons présentée est dite à pas courts.
Dans les versions à pas long la mise à jour de la solution primale est remplacée
par:

xk+1 = xk − β
X2

krk

‖ Xkrk ‖∞
ou

xk+1 = xk − β
X2

krk

γ(Xkrk)

Cette dernière est la plus utilisée car elle donne le pas le plus long et donc
la décroissance la plus forte de la fonction économique. Dans tous les cas on
peut montrer que xk+1 > 0 et réalisable.

A ce point on peut on peut se poser plusieurs QUESTIONS
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(a) L’algorithme se termine-t-il?

(b) Comment démarre-t-on?

(c) Comment l’algorithme se comporte-t-il en pratique?

Il existe des théorèmes de convergence sur lesquels nous ne nous at-
tarderons pas.

Pour démarrer on peut, par exemple, créer une nouvelle variable xn+1

et une nouvelle colonne An+1 = b − Ae où e = (1, . . . , 1), et considérer le
problème:

minimiser cx + Mxn+1

sujet à: Ax + (b − Ae)xn+1 = b

(x, xn+1) ≥ 0

où M est un grand nombre positif. Or (e, 1) est une solution réalisable de ce
problème, et si M est assez grand, dans la solution optimale on a xn+1 = 0
et donc cette solution optimale peut servir pour demarrer l’algorithme.

2.2 Performances pratiques

Le point critique est le calcul, à chaque itération de la matrice AX2
kAt qui

nécessite O(m2n) opérations, puis il faut résoudre un système linéaire, de ma-
trice AX2

kAt, ce qui prend O(m3) opérations, donc chaque itération nécessite
O(m2n + m3) opérations et comme m ≤ n au total on a au plus O(n3)
opérations par itération.

On a pu observer que si on démarre près de l’optimum, alors l’algorithme
se comporte presque comme le simplexe et fait de petits pas car les ellipses
sont petites. Par contre si on démarre loin, il fait de gros progrès vers
l’optimum. C’est donc un bon candidat pour un algorithme mixte points
intérieurs-simplexe (cf plus loin).

Exemple numérique 1:

maximiser x1 + 2x2

sujet à: (4)

x1 + x2 ≤ 2

−x1 + x2 ≤ 1

x1, x2 ≥ 0

Après addition de variables d’écart et transformation en un problème de
minimisation:
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minimiser −x1 − 2x2

sujet à: x1 + x2 + x3 = 2

−x1 + x2 + x4 = 1

x1, x2, x3, x4 ≥ 0

x1 .100 .144 .198 .262 0.364 0.530 0.546 0.499

x2 .100 .188 .359 .667 1.068 1.339 1.439 1.491

Résultats d’itérations consécutives de la version “pas courts” avec β =
0, 995. La solution optimale est x?

1 = 1/2 et x?
2 = 3/2.

1

2

x2

x1

2

x0

8



3 LE “POTENTIAL REDUCTION ALGO-

RITHM”

Soit le PL suivant:

minimiser cx

sujet à: Ax = b

x ≥ 0

et son dual:

maximiser pb

sujet à: pA + s = c

s ≥ 0

avec l’hypothèse suivante:

Hypothèse 1 La matrice A a ses lignes linéairement indépendentes et il
existe x > 0 et (p, s) avec s > 0, qui sont réalisables pour le primal et le dual
respectivement.

Le “affine scaling” algorithme décroissait strictement la fonction économique
à chaque itération. Le résultat est que la séquence de solutions approche très
rapidement de la frontière du domaine et à partir de là les progrès sont lents
puisque les ellipsöıdes sont de plus en plus petites. Une solution est d’essayer
de repousser les solutions de la frontière du domaine de façon à pouvoir
continuer à faire des progrès significatifs.

On introduit la fonction potentielle G(x, s)

G(x, s) = q log s.x −
n

∑

j=1

log xj −
n

∑

j=1

log sj

où q est une constante plus grande que n. Si x et (p, s) sont réalisables du
primal et du dual resp.

c.x − b.p = (s + pA).x − xtAtp = sx

Donc le premier terme mesure le saut de dualité, les deux autres termes
pénalisent la proximité de la fontière du domaine pour la solution primale et
duale respectivement.

Le théorème suivant montre que si on peut décrôıtre, à chaque itération,
la valeur de la fonction potentielle G(x, s) d’une certaine quantité, on peut
garantir d’obtenir une solution ε-optimale aprè un petit nombre d’itérations.
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Theorème 4 Soient x0 > 0 et (p0, s0) avec s0 > 0, des solutions resp. pri-
male et duale réalisables. Soit ε > 0 le seuil de tolérance pour l’optimum.
Tout algorithme qui conserve la réalisabilité primale et duale et qui fait
décrôıtre G(x, s) d’une quantité supérieure ou égale à δ > 0 à chaque itération,
trouve une solution des problèmes primal et du dual de saut dual:

sK.xK ≤ ε

après au plus

K =

⌈

G(x0, s0) + (q − n) log(1/ε) − n log n

δ

⌉

itérations

Preuve. On a:

G(x, s) = q log sx −
n

X

j=1

log xj −
n

X

j=1

log sj

= n log sx −
n

X

j=1

log xj −
n

X

j=1

log sj + (q − n) log sx

≥ n log n + (q − n) log sx (5)

Car n log sx −
∑n

j=1 log xj −
∑n

j=1 log sj atteint son minimum quand xjsj =

sx/n, ce qui peut être vu en annulant la dérivée et en vérifiant que la dérivée
seconde est non négative. Donc,

n log sx −
n

X

j=1

log xj −
n

X

j=1

log sj ≥ n log n (6)

Soit δ > 0 fixé et supposons que nous avons un algorithme qui a la propriété
que:

G(xk+1, sk+1) − G(xk, sk) ≤ −δ, ∀k

Après K itérations on a:

G(xK , sK) − G(x0, s0) ≤ −Kδ.

Pour la valeur de K du théorème on a

G(xK , sK) ≤ −(q − n) log
1

ε
+ n log n

En utilisant l’inégalité (5), on a le saut de dualité en dessous du seuil desiré.

sK .xK ≤ ε
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Ce théorème nous incite à construire un algorithme qui decrôıt la fonction
potentielle G(x, s) d’au moins une constante à chaque itération. C’est pour
cette raison que l’algorithme que nous allons décrire s’appelle “de réduction
de potentiel”.

Intuitivement, l’idée centrale est la suivante: En partant d’une solution
réalisable x > 0 du primal et d’une solution réalisable du dual avec s > 0, on
cherche une direction d telle que G(x + d, s) < G(x, s). La direction d doit
satisfaire:

Ad = 0, ‖ X−1d ‖≤ β < 1

de façon à ce que x+d soit réalisable, comme vu dans la méthode “affine scal-
ing”. Le problème de minimiser G(x + d, s) sous les contraintes précédentes
est un problème non linéaire très difficile. Pour cette raison, on approxime la
fonction potentiel G(x + d, s) par son développement de Taylor au premier
ordre et on résout le problème suivant:

minimiser ∇xG(x, s)td

sujet à Ad = 0

‖ X−1d ‖≤ β

Le problème est exactement le même que celui rencontré dans la méthode
précédente, sauf pour la fonction économique dont les coeffs sont ĉ = ∇xG(x, s)
au lieu de c, i.e.

ĉi =
∂G(x, s)

∂xi

=
qsi

sx
− 1

xi

Donc en appliquant le Lemme 2 on obtient:

d? = −βX
u

‖ u ‖

où:
u = X(ĉ − At(AX2At)−1AX2 ĉ)

Puisque:
Xĉ =

q

sx
Xs − e

on obtient:
u =

`

I − XAt(AX2At)−1AX
´

“ q

sx
Xs − e

”

De plus, G(x, s) décroit de β ‖ u ‖ +O(β2), où le premier terme vient du
Lemme 2 et le deuxième est dû aux termes d’ordre supérieurs omis dans le
développement de Taylor de G(x, s).

En bornant soigneusement les termes d’ordre supérieurs,on peut montrer
que si ‖ u ‖≥ γ, pour un γ donné, alors la fonction potentiel diminue d’au
moins une valeur constante.

Remarquez que dans une telle itération ni s ni p ne sont modifiés. Cepen-
dant, si ‖ u ‖< γ, on ne peut pas decrôıtre suffisemment la fonction potentiel,
dans ce cas on change les variables duales pour obtenir la décroissance voulue.

L’algorithme prend en entrée:
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(a) Les données: (A, b, c); la matrice est de rang m.

(b) Des solution réalisables de départ x0 > 0, s0 > 0, p0;

(c) Une tolérance d’optimalité ε > 0;

(d) Les paramètres β ∈ (0, 1), γ et q.

1. (initialisation) On démarre avec une solution réalisable x0 > 0,s0 > 0, p. Poser k = 0;

2. (test d’optimalité) Si sk.xk < ε STOP

3. (Calcul de la direction).

Xk = diag(xk
1 , . . . , xk

n)

A
k

= (AXk)t(AX2
kAt)−1AXk

uk = (I − A
k
)

“ q

sk.xk
Xksk − e

”

dk = −βXkuk/ ‖ uk ‖

4. (itération primale) Si ‖ uk ‖≥ γ, poser:

xk+1 = xk + dk

sk+1 = sk

pk+1 = pk

5. (itération duale) Si ‖ uk ‖< γ, poser:

xk+1 = xk

sk+1 =
sk.xk

q
X−1

k
(uk + e)

pk+1 = pk + (AX2
kAt)−1AXk

„

Xksk − sk.xk

q
e

«

6. Poser k=k+1 et retourner en (2).

On peut montrer que xk et (pk, sk) sont toujours primale et duale réalisables.
Il n’y a malheureusement pas d’interprétation intuitive de l’itération duale.
Nous terminerons par le théorème suivant qui montre que la décroissance
voulue peut être atteinte:

Theorème 5 L’algorithme avec β < 1 et γ < 1 a les propriétés suivantes:

(a) Si ‖ uk ‖≥ γ (itération primale), alors

G(xk+1, xs+1) − G(xk, xs) ≤ −βγ + β2

2(1−β)
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(b) Si ‖ uk ‖< γ (itération duale), alors:

G(xk+1, xs+1) − G(xk, xs) ≤ −(q − n) + n q
n

+ γ2

2(1−γ)

(c) Si q = n +
√

n, β ≈ 0, 285 et γ ≈ 0, 479, alors l’algorithme décroit
G(x, s) d’au moins δ = 0, 079 à chaque itération.

Preuve. Démonstration longue et fastidueuse.

Initialisation
On montre dans cette section comment initialiser. On considère le pro-

gramme artificiel:

minimiser cx + M1xn+1

sujet à: Ax + (b − Ae)xn+1 = b

(e − c).x + xn+2 = M2

x1, . . . , xn+2 ≥ 0

et son dual:

maximiser pb + pm+1M2

sujet à: pA + pm+1(e − c) + s = c

p.(b − Ae) + sn+1 = M1

pm+1 + sn+2 = 0

s1, . . . , sn+2 ≥ 0

Les variables xn+1, xn+2, pm+1, sn+1 et sn+2 sont des variables artificielles,
M1 et M2 sont grands et spécifiés plus loin. On doit avoir:

M2 > (e − c).e.
Les vecteurs:

(x0, x0
n+1, x

0
n+2) = (e, 1, M2 − (e − c).e

(p0, p0
m+1, s

0, s0
n+1, s

0
n+2) = (0,−1, e, M1, 1)

sont réalisables pour les problèmes artificiaux primal et dual resp. et peuvent
être utilisés pour démarrer l’algorithme de réduction de potentiel. La relation
entre le problème initial et le problème artificiel est donnée par:

Theorème 6 Soient x? et (p?, s?) des solutions optimales du primal et du
dual resp., dont l’existence qui est supposée. Si:

M1 ≥ max{(b − Ae)tp?, 0} + 1
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et:
M2 ≥ max{(e − c)tx?, (e − c)te, 0} + 1

alors:

1. Une solution réalisable (x, xn+1, xn+2) du problème artificiel primal est
optimale ssi x est optimale du problème initial et xn+1 = 0

2. Une solution réalisable (p, pm+1, s, sn+1, sn+2) du problème artificiel dual
est une solution optimale ssi (p, s) est optimale du problème dual initial
et pm+1 = 0

Preuve. (1) Soit (x, xn+1, xn+2) une solution optimale du problème artifi-
ciel primal. Supposons que xn+1 > 0. A partir de x? définissons la solu-
tion réalisable suivante du problème artificiel primal, en posant x?

n+1 = 0 et
x?

n+2 = M2 − (e − c).x?. Alors

c.x? + M1x?n+1 = p?.b = p?.(Ax + (b − Ae)xn+1)

Puisque (p?)tA + (s?)t = ct, xn+1 > 0 et
M1 > (b − Ae)tp? on a:

c.x? + M1x?
n+1 < (c − s)tx + M1xn+1 ≤ c.x + M1xn+1

parce que s?.x ≥ 0, ce qui contredit l’optimalité de (x, xn+1, xn+2). De
plus, l’inégalité précédente montre que (x?, x?

n+1, x
?
n+2) est optimale pour

le problème artificiel primal et que sa valeur est c.x = c.x?. Puisque x est
réalisable, elle est optimale pour le problème primal original.

Réciproquement, soitx? une solution optimale du primal original. Alors
(x, xn+1, xn+2) avec x = x?, xn+1 = 0, xn+2 = M2 − (e − c).x? est réalisable
pour le primal artificiel. Sa valeur c.x + M1xn+1 cöıncide avec sa valeur
optimale c.x? + M1x

?
n+1 et donc est optimale du primal artificiel.

3.1 Complexité de l’algorithme

On suppose que A, b et c ont des composantes entières dont les valeurs
absolues sont bornées par U . Nous n’entrerons pas dans les détails. Il est
clair que la valeur de la solution initiale compte. On peut montrer que
G(x0, s0) = O (qn log(nU)). D’après les théorèmes 4 et 5 avec q = n +

√
n

et la valeur G(x0, s0) ci-dessus, on peut conclure que l’algorithme trouve des
solutions xK et sK avec un saut de dualité:

(sK).xK ≤ ε (7)

après:
K = 0

„√
n log

1

ε
+ n2 log(nU)

«

(8)
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itérations.
Chaque itération nécessite O(nm2+m3) opérations arithmétiques. Comme

m ≤ n, on a au plus O(n3) opérations arithmétiques. Donc l’algorithme
trouve une solution ε-optimale en:

0

„

n3.5 log
1

ε
+ n5 log(nU)

«

(9)

opérations arithmétiques. Notez que cet algorithm est POLYNOMIAL. Il
y a des améliorations pour accélélerer la convergence.

4 LE “PRIMAL PATH FOLLOWING AL-

GORITHM”

C’est la méthode qui semble la plus employée et la plus expérimentée. Elle
donne de très bons résultats tant théoriques que pratiques.

Cet algorithme résoud le PL suivant:

minimiser c.x

sujet à: Ax = b

x ≥ 0

et son dual:

maximiser p.b

sujet à: pA + s = c

s ≥ 0

Une des idées derrière cette méthode est l’observation qu’une des difficultés
de la programmation linéaire provient des inéquations x ≥ 0. En effet les
variables non astreintes, une fois dans la base, n’en sortent jamais et de plus
dès qu’un coût réduit est non nul dans la fonction économique, elle peut entrer
dans la base. Pour cette raison on va convertir le PL en un problème avec
seulement des équations, en utilisant une fonction barrière qui va empêcher
une variable d’atteindre la frontière xj = 0. On y parvient en ajoutant les
termes − log xj à la fonction économique. Ces termes vont faire augmenter
cette fonction vers +∞ quand xj va tendre vers 0. Nous introduisons la
fonction barrière suivante:

Bµ(x) = c.x − µ
n

∑

i=1

log xj
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supposée valoir l’infini si xj ≤ 0 pour au moins un j. On considère la famille
de programmes non linéaires (dits problèmes barrières) suivante:

minimiser Bµ(x) (10)

sujet à: Ax = b

Supposons que pour chaque µ > 0, le problème barrière possède une
solution optimale x(µ). (On peut facilement montrer que ce problème ne
peut pas avoir de solutions optimales multiples car le domaine est strictement
convexe.) Au fur et à mesure que µ varie, les solutions x(µ) successives
forment le “chemin central” (“central path”). Celui-ci est illustré sur la
figure suivante.

x*

centre analytique

x(10)

x(1)

(x(0.1)
x(0.01 c

On peut montrer que limµ→0 x(µ) existe et est une solution optimale x?

du programme linéaire initial. L’idée intuitive est que quand µ est très petit,
le terme logarithmique est négligeable presque partout, mais il nous empêche
quand même d’atterrir sur la frontière.

Un problème barrière ayant comme origine le dual est le suivant:

maximiser p.b + µ
n

∑

j=1

log sj (11)

sujet à: pA + s = c

Soient p(µ), s(µ) une solution optimale de ce problème (11) pour µ > 0.
Les problèmes (10) et (11) sont des problèmes d’optimisation convexe, c.à d.
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que l’on optimise une fonction convexe sous des contraintes qui définissent
un ensemble convexe (ici des inéquations linéaires). Il existe des conditions
similaires aux écarts complémentaires de la programmation linéaire, ce sont
les conditions de Karush-Kuhn-Tucker. Elles sont nécessaires et suffisantes
pour que des solutions soient optimales pour les problèmes (10) et (11)

Conditions de KKT:

Ax(µ) = b

x(µ) ≥ 0

Atp(µ) + s(µ) = c (12)

s(µ) ≥ 0

X(µ)S(µ)e = eµ

où X(µ) = diag(x1(µ), . . . , xn(µ)) et S(µ) = diag(s1(µ), . . . , sn(µ)). Noter
que si µ = 0, alors ce sont les conditions du théorême des écarts complémentaires.

Lemme 7 Si x?, p? et s? satisfont les condition (12), alors ils sont solutions
optimales des problèmes (10) et (11), c.à d.

x? = x(µ), p? = p(µ), s? = s(µ)

Preuve. Démonstration très facile.

Si µ = ∞, le problème devient:

minimiser −
n

X

j=1

log xj

sujet à: Ax = b

et sa solution optimale s’appelle le centre analytique du domaine des solu-
tions.

Exemple numérique 2: Considérons le problème:

minimiser x

sujet à: x ≥ 0

La fonction barrière est dans ce cas:

Bµx = x − µ log x (13)

et la solution optimale est x(µ) = µ, et quand µ → 0, la solution tend vers
la solution optimale x? = 0
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Exemple numérique 3: (Calcul du chemin central)

minimiser x2

sujet à: x1 + x2 + x3 = 1

x1, x2, x3 ≥ 0

Pour calculer le chemin central on doit résoudre:

minimiser x2 − µ log x1 − µ log x2 − µ log x3

sujet à: x1 + x2 + x3 = 1

En substituant x3 = 1 − x1 − x2, on doit résoudre le problème non linéaire
non contraint suivant:

min x2 − µ log x1 − µ logx2 − µ log(1 − x1 − x2)

En annulant les dérivées on trouve:

x1(µ) =
1 − x2(µ)

2

x2(µ) =
1 + 3µ −

p

1 + 9µ2 + 2µ

2

x3(µ) =
1 − x2(µ)

2

Le centre analytique est trouvé en faisant x → ∞. C’et le point (1/3, 1/3, 1/3).
L’ensemble des solutions optimales du programme linéaire est:

Q = {x : x = (x1, 0, x3), x1 + x3 = 1, x ≥ 0}
dont le centre analytique est (1/2, 0, 1/2), qui est le point obtenu si on pose
µ = 0. Le chemin central aboutit sur le centre analytique des solutions
optimales.

Remarque 2 Le centre analytique n’est pas une notion géométrique, elle
déepend des inéquations utilisées pour décrire le domaine des solutions. Le
rajout d’une contrainte redondante change ce centre.

Le problème barrière est très dificile à résoudre parce que sa fonction
économique n’est ni linéaire ni quadratique. Pour cela on approxime Bµ(x)
autour d’un point donné x par les trois premiers termes de son développement
de Taylor. On a:

∂Bµ(x)

∂xi

= ci −
µ

xi

∂2Bµ(x)

∂x2
i

=
µ

x2
i

∂2Bµ(x)

∂xi∂xj
= 0, i 6= j
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Etant donné un vecteur x > 0, le développement de Taylor de la fonction
barrière est:

Bµ(x + d) ≈ Bµ(x) +
n

X

i=1

∂Bµ(x)

∂xi

di +
1

2

n
X

i,j=1

∂2Bµ(x)

∂xi∂xj

didj

= Bµ(x) + (c − µeX−1)d +
1

2
µdtX−2d

Alors au lieu de minimiser la fonction barrière, on va chercher une direc-
tion d qui minimise le développement de Taylor de Bµ(x + d). Le problème
d’approximation devient:

minimiser (c − µeX−1)d +
1

2
µdtX−2d

sujet à: Ad = 0

Ce problème peut être résolu de façon analytique en utilisant les multipli-
cateurs lagrangiens. On associe un vecteur p de multiplicateurs de lagrange
aux contraintes Ad = 0 et on forme la fonction de Lagrange:

L(d, p) = (ct − µetX−1)d +
1

2
µdtX−2d − ptAd

et on veut
∂L(d, p)

∂dj
= 0,

∂L(d, p)

∂pi
= 0

ce qui donne:

c − µX−1e + µX−2d − Atp = 0

Ad = 0

C’est un système linéaire de m + n équations à m + n inconnues (les dj

et les pj) dont la solution est:

d(µ) = (I − X2At(AX2At)−1A)(Xe − 1

µ
X2c)

p(µ) = (AX2At)−1A)(X2c − µXe)

Le vecteur d(µ) s’appelle la direction de Newton et son calcul s’appelle une
itération de Newton.

La solution x devient x+d(µ) et la solution duale (p, s) devient (p(µ), c−
Atp(µ)). Puis on decrôıt µ à µ̄ = αµ, où 0 < α < 1 est fixé une fois pour
toute.

En résumé la méthode est: 1) (Initialisation) Partir de solutions primale
et duale réalisables x0 > 0, s0 > 0 et p0. k = 0.
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2) (test d’optimalité) Si sk.xk < ε STOP
3) Soit:

Xk = diag(xk
1, . . . , x

k
n)

µk+1 = αµk

4) (calcul des directions) Résoudre le système linéaire:

µk+1X−2
k d − Atp = µk+1X−1

k e − c

Ad = 0

pour trouver p et d
5) (mise à jour des solutions) Poser:

xk+1 = xk + d

pk+1 = p

sk+1 = c − Atp

k=k+1, aller en 2.
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