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Abstract

We propose a new method to obtain bounds of dependability, performance or performability mea-
sures concerning complex systems modeled by a large Markov model. Its extends previous published
techniques mainly designed to the analysis of dependability measures only, and working under more
restrictive conditions. Our approach allows to obtain tight bounds of performance measures on cer-
tain cases, and in particular, on models having an infinite state space. We illustrate the method with

some analytically intractable open queuing networks, as well as with large dependability models.

Index Terms — Dependability evaluation, performance evaluation, Markov chains, numerical

analysis, bounding techniques.

1 Introduction

To derive performance, dependability or performability measures from a model of a complex system,
Markov chains, under different forms, are the most widely used mathematical tools. Sometimes, the
user directly builds a Markov chain from system specifications. Most often, the model is described
in a higher level language such as queues or networks of queues, stochastic Petri nets, etc., and some

tool constructs the stochastic process automatically. The usefulness of Markov chains is due to the



power of the theory and to the efficient algorithmic technology associated with. However, such a
power has a price. There are two major drawbacks when using Markov models. The first one is the
fact that, to be able to represent the more and more complex systems built nowadays, the state spaces
are larger and larger. In general, models having, say, hundreds or thousands of millions of states are
out of scope for exact numerical analysis. The second one is the so-called “rare events” problem,
meaning that in many cases (typically in models of highly available systems), the interesting events
(typically, the fact that the system is down) have very low probabilities, making problematic the use
of Monte Carlo techniques. This is usually related to high numerical values of the ratios between
different transition rates of the chain, which leads also to numerical problems in the exact analysis of
the models (stiffness). Often, the two problems appear simultaneously. To deal with them, a different
approach exists. It consists of computing bounds of the desired measures instead of exact values or
statistical estimations [1], [2], [3]. This is the subject of the paper.

Bounding techniques have been mainly developed for cases in which, at the same time, the model
is large and stiff. The second aspect is in fact used to help with dealing with the first one, as we see in
the paper. The intuition behind the approach is quite simple. When the model is stiff, the stochastic
process spends most of its time in a (small) part of the state space. It is then a natural attempt to try
to approximate the interesting measures by working basically with that part of the state space. This is
done by replacing, in some way, the rest of the state space by “a few” states. All the difficulty is how
to handle that large part of the state space of the model in order to have some control on the accuracy
of the method.

The system is represented by a continuous time homogeneous and irreducible Marko¥ chain
over the finite state spacewith stationary distributiorr (row vector). We denote; = Pr(X,, = )
where X, is a stationary version oX. With each state we associate a reward > 0; r is the (row)
vector of rewards. This paper deals with the computation of

R=E(rx,) = Zrmi =7r’.
i€S

For instance, in a dependability context, the states are in general called “operational” when they
represent a system delivering its service as expected, and “unoperational” otherwise. If a reward equal
to 1 is associated with the operational states and equal to 0 with the unoperational onésistkiesn
asymptotic availability of the system. In a performance context, suppose that the model is a queuing
network and that you are interested in the mean number of customers inguéwath each state

we associate a reward equal to the number of customers in statien the model is in statg the
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expectationR is equal to the desired mean number of customers iAs a second example, #f is
the number of active processors in some model of a fault-tolerant multi-processor computer when its
state isi, thenR is a performability measure (the mepowerof the system).

In this paper we develop an approach that avoids an important drawback of previous works, by ex-
tending the class of evaluable pairs (models, measures). The main restriction of previous techniques,
which mainly concern dependability models, is that “almost” every state must have at least one tran-
sition corresponding to a repair. The approach proposed here works without this condition, but it has
a price: in some cases, large linear systems must still be solved. In the paper we illustrate the method
with cases where these systems are easy to solve (and with models that are such that previous tech-
niques do not apply). In a performance context, it is frequent to work with infinite state spaces. The
techniques we propose can, in some situations, deal with these cases as well. This is also developed
and illustrated here.

The paper is organized as follows. Next section states the context, defines some general notation
and recall basic previous results on bounds. In Section 3 we recall important fact about state aggrega-
tion in Markov chains. The objective of Section 4 is to explain the method of [3]. Section 5 presents
our technique together with some needed supplementary results. Section 6 explains how we deal with
models having infinite state spaces. In Section 7 we give examples, both in the dependability and in

the performance areas, both in the finite and the infinite cases. Section 8 concludes the paper.

2 Preliminaries

Generalities. We are given a finite and irreducible continuous time homogeneous Markov &hain
over the state space, presumed to model some complex system. We denoté the infinitesimal
generator ofX. The asymptotic distribution ok is denoted byr and it will be seen in the paper as
a row vector. We then haveA = 0.

We are also given a vector of positive reals= (...r;...) overS. The goal is the evaluation of
bounds ofR = #rT, without computing vectorr. To do this, we assume that we know a lower and

an upper bound of the rewards, that is, two realand g, such that for alf € S,
0<01 <1 <2 <00

In Section 6 we develop an extension to the cas&pf= co andgy = oc.



The state spacé is assumed to be decomposed (or decomposable) into two disjoint sets, denoted
by G andG. The idea is that the states @ are or include those frequently visited by the chain in
equilibrium. In many situations, the user is able to approximatively identify these sets. For instance, in
a dependability context, a model corresponding to a repairable system with high reliable components
leads to choosé&' as the set of states having less than some fixed number of failed units. In a queuing
model in a light traffic situation, one can associétewith the states where the network has less
than some fixed number of customers. The techniques discussed here attempt to give bounds of the
asymptotic rewardr by working with auxiliary Markov obtained by replacir@ (and the associated

rates) with a “few” states. The good situation is then to Ha¥e< |S].

Some notation associated with a subset of statesFor any subset of stat€s C S, we denote

e m, the restriction ofr to the set”' (row vector with size equal t@”|), r¢, the restriction ot

to C, etc.,

e m(C) =Pr(Xo € C) =X, m = mc1T, wherel” is the transpose of a row vector having

all its entries equal to 1, the dimension being defined by the context,

e 7 = distribution of X, conditioned to the everdtX ., € C'}, (row) vector with siz¢C/|, that

is, o = @y
e C =the complemens — C of C,
e in(C) = {j € C such that there existse C with 4; ; > 0},
e out(C) = {i € C s.t. there existg € C with 4; ; > 0},
e Ac, the block ofA corresponding to the transitions inside suliset

e A, ., the block ofA corresponding to the transitions from subSeto subset’.

Forcing the entries in G by a fixed statej. The main idea comes from the basic initial work by
Courtois and Semal. It consists of building a family of Markov chains derived foimthe following
way. For each statg € in(G), let us construct the new continuous time homogeneous Markov chain

X (), by forcing the transitions frondz into G to enter by statg, as illustrated in Figure 1. The



infinitesimal generator ok (¢) is denoted byd():

AG) — e Age
A%y Ag

The transition rate from any statec G to j is equal t0> icin(c) Aig- In other words,Ag)G =
Ac1"ej, wheree; is the jth row vector of the canonical basel®l. The other transition rates of
X0) that is insided, from G to G and insideG, are as inX. First, we prove thak /) has an unique

stationary distribution by means of the following lemma.
Lemma 1 The Markov chainX /) has an unique recurrent class; this class includes sfate

Proof. Denote byS; the class of statessuch that is reachable from andj is reachable from. The
claim implies thatS; can be reached from every statec S. AssumeS; # S and letk € S — S;. If

k € out(G), by definition ofout(), k is connected tg. If k € G — out(G) then there is necessarily
a path fromk to somel € out(G) (sinceX is irreducible), which is completely included @&, and
by definition of X, [ is connected tg. It remains the case of a statec G — {j}. If, in X, there
is a path fromk to j completely included irtz, we are done. If not, sinc& is irreducible, there is at
least a path fronk to j passing througldr, thus entering for the first tim@ by some statéand then,

we are in the first discussed case [ |

Figure 1: The topology ok (/)

It is easy to see that there can be transient state§in. For instance, think of this simple
situation: some statec G has only one transition out tpand one transition in froth € G. In X ),

such a state is transient.



SinceX ) has an unique recurrent class, it has an unique stationary distribution which we denote
by 7). Then, for each statg € in(G), we have the following result, which is a slight extension of

results in [1]:

Theorem 1 There exists a positive vectg with supportin(G), that is, satisfyings; = 0if j &
in(G), such thaid1™ = 1 and

Z ﬂjﬂ'(j) = .

j€in(G)

Proof. See Appendix A.

In [1], the authors show this result under the assumption that the chains are irreducible. In the
Appendix we show that the only necessary assumption is the existence of an unique stationary dis-
tribution for X (). We also show that the result is still valid in the infinite state space case (used in
Section 8).

From this theorem, we derive the two following immediate results, put together as a corollary.

Corollary 1 If we denoter)(G) = P(XY) € G), we have

min 79)(@) < 7(G), (1)
j€in(Q)
and if RY) = 7T we have
min RY) < R < max RY), 2
j€in(Q) j€in(Q)

Proof. The proof is in [3], for the particular case of the asymptotic availability measure. The

extension to the general asymptotic reward measure is straightforward |

Corollary 1 gives the relationships that will be used to derive boundB.ofn the sequel, we
will develop a general approach to build a lower bounditfi;c RU) and an upper bound of

manem(G) R(J) .



3 Aggregation of states

To go further, we suppose that we are given a partifioip, = 0,1,..., M} of S and an integek’
with 0 < K < M, and that? is defined as

K—-1
G = U Cy.
I=0

Figure 2: ChainX and the partitoC;,I =0,1,...,M} of S

In a performance context, assuming that we deal with something like a queuing network or a
stochastic Petri nety’; can be, for instance, the set of states where the system, or some of its sub-
systems, had customers or tokens. In a dependability case, if we work with a model of some
fault-tolerant multi-component syster;; can be, for instance, the set of states corresponding to
I operational components. The good property for such a partition is that the higher the jrilex
lower the probability thafX ., belongs to the set’;.

In what follows, we assume that transitions from cl@sgo classC'; are not allowed if/ < I -2,

that is, that the following condition holds:

Condition 1 For any two integer indice$ and J such that/ < [ — 2, for any states € C7 and

j € Cywe haved, ; = 0.

Observe that, given the irreducibility of, this implies that for all indeX > 0 there are at least two
statesi € Cy andj € Cr—; such that4; ; > 0.

Following with the examples used a few lines before, in the case of a queuing model or a Petri net,
this means, for instance, that simultaneous departures are not allowed. In the dependability example,

the condition says that simultaneous repairs are not allowed.
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For each statg¢ € in(G), we will consider now the following aggregation &f0). We define a
continuous time homogeneous Markov chaif#)2¢8 which is constructed fronX ) by collapsing

the classe€’'x, Ck 11, ..., Cy Of the partition into single states,, cx 1, .-, car-

Figure 3: The topology of ()ags

If we denote byA()222 the infinitesimal generator of (/)22¢, recalling thatr/) (Cy) is the prob-

ability thatXc(,Z;) belongs taC;, the transition rates ok (/)222 are given by the following expressions:
e forall h € G (orh € out(@)), and for alll > K,

AR =N A, ©)
1€Ct

e foranyl > K, '
() ZiECI 7Tz‘(J) ZlECI—l Ai

(j)agg _ _
ACI,lel MI W(])(C]) ) (4)

G
AWage _ G) _ Zz’eCK ”i]) ZlecK_l Ay )
CK,J Mg = W(])(CK) )

e foranyl > K andJ > I,

()
AG)agg _ )\(j) _ Zz’ecf ; ZlecJ Ay ©)
o LI 7()(Cr)
We denote byS*#¢ = G U {ck,ck+1,-..,cur} the state space of ()22, SinceX) has an

unique recurrent class (Lemma 1), it is immediate to see XHaP2 has also an unique recurrent



class includingj. Let us denoterz(j)agg = Pr(ng"agg =), i € 5288, where x7)*#¢ denotes a

stationary version oX (/)22 We then have the following well known result on aggregation:
foranyg € G, 7?88 = z7) and for anyl > K, #)*& = 70)(Cy). (7)

The chainX ()2gs s called in [1] “the exact aggregation &f(7) with respect to the given parti-
tion”. We adopt here this terminology (in [4], it is called “the pseudo-aggregatiaki f w.r.t. the
given partition”). Of course, to build it we need the stationary distributiéf of X(7), which is un-
known. We define in the next subsection another chain which “bounds”, in some way,¢tii¢¢,

and from which the desired bounds Bfwill be computed.

4 “Bounding” the Markov chain X (9)ase

For each statg € in(G), let us define a homogeneous and irreducible Markov chiaihover S2s¢
with the same topology as the aggregated ct&ifi?¢8, in the following way. We keep the same tran-
sition rates inside the subs@tand fromG to thec;’s, which are computable without the knowledge
of the stationary distribution ak(?). The transitions inside the set of states, cx+1,...,ca } and
from ck to j are changed as follows: we replace the (unknown) exact aggregated rates tamay,
I < J, by someA}jJ; we replace the (unknown) exact aggregated rates totac;_1, I > K, by

somey; , and the (unknown) exact aggregated rate feggarto j, by ;.. These modifications must

satisfy
+ ()
for K <I>J<M, A ;>Ar7 (8)
for 1 > K, 0<p;<up¥ (9)

Then, between the three chaifs$’), X (9)22g andY ), the following relation holds.

Theorem 2 If we denote by (%) the stationary distribution o /), we have
79 = 7P =5, (10)
Proof. Let us denote byP(@) (respectively byP’()) the stochastic matrix ok (/) (respectively of

Y ). We have:
por— [ f6 Fea ) po_ [ e Tee |
P(J) Pé P(J) P

GG GG G



where the matrix.,, is equal to( Pac, 17, .. ., Pac,, 17).
Given thatr ) PU) = 7() andy ) P'() = y(), we have:
#) (Po - PogP;'PY) = 7Y
56’ (Pe — Pla(Pe) ' Pell) =98
From [1, theorem 8], it follows tha;?(Gj) and§g) belong to the polyhedro®((I — Pg)~'). From

Appendix A, Lemma Sﬁg) andyg) are both equal to thgth vertex of P((I — Pg)~!). From (7),

we have directly the first equality betweérg) and?rg)“‘”’ [ |

Theorem 3 Betweeny?) (G) = Pr(chg) € G) where YY) is a stationary version ot'(), and

r(2ee(@) = 70)(@), we have the relation

y(j)(G) < W(J')(G)' (12)

If one of the inequalities (8) or (9) is strict, the®)(G) < W) (Q).

Proof. See Appendix B. |

Define overS?#e8 the two reward vectors;, andrs obtained by completing vecteg; with rewards

on the aggregated stateg, cx 1, - - -, cpr €qual togy in rq and equal t@, in ra.

Theorem 4
,Bin yUrl <R, (12)
jmax y9r] > R. (13)

Proof. Let us consider the expressionydf)r}:

Given thatr) (@) = #()2eg(q) from (7), that?éj)rg > o1 (sincer; > p; for all statei) and

using Theorem 2, we have the following inequality:

y9rl < 79(@) (*(Gj)rg — 91) + o1

= 70T = jo) < R,
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From Corollary 1, we have:
min y(j)rf < min R(lj) < min RY <R. (14)
j€in(Q) j€in(Q) j€in(Q)
In the same way, denotingy’) = w(@)rT and writing
yWry =y9(@) <§g)r(T; - Q2> + 02
and observing thﬁg)rg — 02 < 0, we obtain
yrl > rY) > RO,

and thus

s y(j)r;r > max jo) > max RY) > R. (15)
j€in(@) j€in(G) Jjein(G)

Resuming, the bounds &t are obtained using (14) and (15). To do this, we must be able to build
chainY ¥, that is, to build bounds)j’J andy; of the corresponding (unknown) transition rates in
X (9)age (relations (8) and (9)). We describe now the way this is done in [3]. Next section describes

our technique, which has the same goal.

The approach of [3]. Recall that we want to compuﬁe}fJ andy; withoutthe knowledge ofr (@),

the (unknown) stationary distribution &f9) for each;j € in(G), it would be nice to use

VI, Jst. K <I<J<M, ) ,=max Ay, (16)
1€Ct lec,
VIst. K <I<M, p;=min Ay, a7)
i€Cy leCry

This is the idea followed in [3]. The use of relation (16) immediately implies,klj{a}t> 0. Letus
examine now the bounds; . In order to have:, > 0 for any value ofK’, we need a supplementary

condition to be satisfied hy(:

Condition 2 For any index! # 0, for all statei € C there exists at least a stajec C7_; such that
Ai,j > 0.

This can be quite restrictive as we will illustrate later, but the interest relies in the fact that it allows
to obtain direct lower bounds of thegj)’s. In Section 5, we develop a new approach that does not

need this assumption, allowing to work with much more general models.
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Other related works. Before presenting the method that we propose, let us briefly describe other
related papers in the area. First note the approach of [5] who construct from the original model two
new models which respectively lower and upper bound the measure using particular job-local-balance
equations. However this technique doesn't give tight bounds and becomes more complicated to apply
with complex systems [5]. The starting work from which papers like this one are built are [1] and [2].

In [6], these results are improved, following the same research lines. A different improvement is [3]
and we follow here this approach to obtain a more powerful bounding technique. Briefly, in [6] the
author derives a general iterative bounding technique having the following main differences with [3]
and with our work: it can be applied without restrictions (while ours or the method of [3] needs some
conditions to work) but is more expensive. The final form of the approach of [6] is quite different,
however: it is presented as an iterative process where one bounds the conditional distributions the
7c,’s, several times if necessary, and of the probabilitiéS'(7)), in order to derive bounds on the

total vectorr and then onR. The key point in the complexity comparison is that [6] basically needs
the inversion of a matrix to obtain each necessary bound (for veators and for probabilities
m(C(I))’s). The technique in [3] exploits the strong Condition 2 to obtain a less expensive process.
Our technique is more expensive than this one, but it needs much less restrictive conditions. This last
feature allows us to obtain tight bound for some performance models on infinite state spaces, as shown
in our paper.

To reduce the computational cost of the bounds obtained by the first algorithm of [3], a technique
of “duplication of states” is proposed in [3], [7] and [8]. The main objective in [3] is to reduce the
number of linear systems to solve. In [7], the authors propose a “multi-step bounding algorithm” to
improve the bounds by increasing the threshaldvithout restarting the work from the beginning.

That is, the results for levek + 1 can use those corresponding to lefel But the spread between

the bounds has a non-zero limiting value [8]. This problem is handled in [8] using a technique called
“bound spread reduction” to reduce the error introduced at each step of the previous iterative pro-
cedure. A simple heuristic to choose between the “multi-step bounding algorithm” and the “bound
spread reduction” is developed and illustrated in [8]. The method that we propose here can also use
the same technique to improve its efficiency (however, we do not develop this point in the paper).

The same authors [9] have chosen another approach to bound mean response times in heteroge-
neous multi-server queuing systems. From the original model, they construct two new models, one to

obtain a lower bound of the considered measure and another one to obtain an upper bound. Another
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line of research is [10] which, improving previous work by the same author, gives better bounds when
additional information (“distance to failure”) is available. In that paper the number of linear systems

to be solved is also reduced.

5 The proposed method

This is the main part of the paper. Its goal is to derive a method to avoid Condition 2 and still be able
to bound the measur®. We start by introducing the idea informally. Then, we recall some results of

[4], where the authors analyze the sojourn times of a Markov cKaiim a part of its state space, and

the asymptotic behavior of these (in general dependent) random variables, and we derive a hew one

(Lemma 3), which we need to formalize the method.

5.1 The idea underlying our method

Consider a birth and death process and dengtgespectivelyu;) the birth rate (respectively death
rate) associated with stateThe mean sojourn time in stat¢or mean holding time) i&; = 1/(\; +
;) and the probability that after visitingthe next state i$ — 1 isp; = u;/(\; + ui). Observe then
that

pi

The intuitive idea leading to our bounding technique is to write the (exact) aggregated X&te in
from classC; from C;_1, that is, the transition rate fromy to ¢;_; in X (/)agg, ng), in a similar form
than (18). In the next subsection we write it as (relation (24))

()

) = 2
()’

h’I])

and we derive useful expressionSpé’f) andhgj ) allowing us to obtain a bound qﬁﬁj ),

5.2 Sojourn times and aggregation of states

Let us denote by{}]% the length of theath sojourn och(,ﬁ;) in classC;. The first visited state of';
during this sojourn is denoted tWI(Q (VI(Q € in(Cy)) and after leaving’;, the next visited state is

denoted b)W}JTz (WI(Q € in(Cr)).
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The distribution ofVI(Q, as a row vectoru}j)(n) defined overCy, is given by the following
expression [4]:
of (n) = o ()(BE))" .
whereBY) is the stochastic matrbég,llAgl)v OIAE}A((;,), o andv{ (1) = nlJ) - wgl)AalAgi o, Of
course for alln > 1, vf,j)(n) has non-zero entries only on staidselonging toin(C7).

The distribution otHf,f% is given by [4]

Pr(H}{) >t) = vgj)(n) exp(Ac, )17t

n

and its mean is
E(HY) = v (n)A;"1".

In [4] itis in particular shown that vector

v = ’(’J%)& (19)
o Aoy 1T

is the stationary distribution of the Markov cha(ih}(fg)n, that is, ifv}j)(l) = vf,j) thenv}j)(n) =
vf,j) forall n > 1. We denote bwfﬂz the component obf,j) corresponding to statee C;. We
should also note thatg) = e;, wheree; is the jth row vector of the canonical baseRic!.

Let us consider now some relationships between chiifis and X (/)22 from the sojourn time
point of view. We denote bygj) the mean holding time ak W)2g8 in statec;, K < I < M, that is,

1

for 1 > K, W =_— _ (20)
:“gj) + 21 )‘gj,?l
A result needed here is given in the following lemma:
Lemma 2
Foranyl > K, hY) = v l1". (21)

For the proof, see [4], basically Corollary 4.6. Lemma 2 says that the mean holding time (i.e. the
mean sojourn time) ok ()22 in ¢; is equal to the mean sojourn time &fY) in C; when it enters
C7 by statei with probabilityvgl.) (for instance, think of the first sojourn ifi; of a version ofX (/)
having as initial distribution the vectar@) such thaZ) = v ).

Let us denote bﬁ“ the mean sojourn time of U) in C; conditioned to the fact that the process

enters the sef’; by statei. Observe that, for alj € in(G),
/h\Jz‘,I = E(H}{QL ] Vl(i) =) foralln > 1. (22)

14



From Relations (21) and (22), we can write
hgj) = Z ’Ugl) /}{i,l- (23)
i€in(Cr)
Now, for the purposes of this paper, we have to consider the event “wherittsejourn ofX (7)

in Cr ends, the next visited state belongsip ", that is, {W}Jg € Cr-1}. Itis straightforward to
verify that the probability of this event is

for I > K, PI(WI(Q S C]_l) = —’U}i) (n)AE}ACI,CI,llT-
When!I = K, we also have

Pr(Wi), = j € in(G)) = —v (m)AgLAY) o 17,

1 - K
whereA(CjI)(’CK_1 is the matrix equal tod¢,. ., 1T e;, ande; is the jth row vector of the canonical
base inRI¢x-1l,
The event similar t({WI(Q € C;_1} in the aggregated chaiki )22¢ is “when leaving state;,
the chain jumps te;_,". Its probability is
()
() 3

Py = —.
ARSI

Observe that the transition ratzé;j) from c; to ¢;_1 in X ()age js

()

G) _Pr—
NI - h(j)' (24)
I

The following result (similar to Lemma 2) holds:

Lemma 3
G _ () 41 T
Foranyl > K, p;’ = —vy Ac Ac, o 41 (25)
and
i = —v@ Ak AE) ¢, 1T (26)
Proof.

Let7 > K. From (6) and from (4), we can write

)\(j) _ W(szAclchlT ) _ W(CJ'I)ACLCI—I]'T
L= Gyr M7 Gyt
U¥s: 1 T 1
T T
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Then,

() 4T
o Aol

(4) (4)
Ky +Z)‘I,J = A
J>I ”(cjl)lT
_ _TF(C]'?ACIIT
ﬂ'((QIT

(sincedq, 5,17 = —Ac,17).

This leads to
G) o
:“gj) + ZJ>I )‘gj,?l

nglT ﬂgBACI 1T

_ W(C]'EACLCI—l 17

WgBACI 1T

It remains to check that the last expression is equa#ﬁé")AgllActhlT. The case of clasS'k

is proven in the same way. |

As for Lemma 2, Lemma 3 says that the probability th&{)222 will jump to ¢;_; when leaving
cr is the same as the conditional probability f&f/) to jump toC;_; when leavingC;, given that
X0U) entersC; by statei with probabilityvg?. This implies that, if we denote by ; the conditional
probability thatX ) jumps toC;_; when leavingC;, given that the sojourn started in state C7,

we have

P = > o) b (27)
i€ (Cr)

5.3 The bounding algorithm

Let us assume that Condition 2 is not satisfied. To obtain the bounBgven in (12) and (13), we
proceed as in [3]. The problem is the computation of lower bounds qjstﬂs.
First let us consider a new subset of state€'pfin(C7)*, which is the set of entry pointsof C;

such that ifX 9) entersC; by i, there is a non-null probability that the next visited clas§'is:
in(Cr)* ={i € n(Cr) | pi,r > 0}.
Our methods needs then that the two set€”;)* andin(Cy) are equal. Let us put it explicitly.
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Condition 3 For all I > 1 and alli € in(C7), the probability to jump fronC; to C;_; when the

sojourn inCy starts ing, is not null (that is,in(Cr)* = in(Cr)).

This condition is obviously much less restrictive than Condition 2. We did not find any realistic
model where it does not hold. Under Condition 3, lower bounds o;ftﬁfés are given in the following

result.

Theorem 5 Forall I > K, for all j € in(G),

=

* : 7I (])
= min == < . 28
i i€in(Cr) h@[ = Hr (28)

Proof. The result simply follows from relations (23) and (27), writing that, for dny K,

' () ~
(49 _ pgj) . Ziem(cl) U[{i i1
My -

~ )

hgj) > icin(Cy) ”?2 hir

and then using the fact that, -, vfﬂz =1 u

Let us resume the algorithm. The input data are the partition and a giveridevidie steps to be

followed are the following:

e Once the patrtition and the threshadldfixed, compute the starred bounds given by (28). To do
this,

— for each clas€’y, I > K, compute thep; ;'s and theﬁ“’s ; alternatively, lower bounds
of thep; ;'s and upper bounds of tHAeLJ’s can be used (we will see in next section that

the infinite models are analyzed this way)

— computey using (28).

o Generate? and then, for any € in(G), find the stationary distributiog?) of the chainy ¥)
with the choice; = ;7. Possibly, use the techniques in [8] or in [10] to reduce the number of

linear systems to solve.

e Compute the lower and upper boundsfdtising (12) and (13).

The main drawback of this algorithm is that the computation ofgihes and theﬁi,l’s may be

numerically intractable due to the possible size of ctagsMoreover, even if they can be calculated,
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the induced cost may be too high for the user. A possible way to handle this problem is to try to obtain
new bounds on these numbers. We are following this direction in our current research work. In this
paper, we want only to illustrate the use of our approach in cases where deriving the bounds can be
done analytically. However we can note that if Condition 2 holds, the bounds obtained by the new

algorithm are better than those of [3], as stated in next result.

Lemma 4 If Condition 2 holds (which implies that Condition 3 holds as well), then fodat K,
pr < pp <

Proof. Let us denote by; the vector whose entries are 0 exceptiiheone, which is equal to 1. From

Lemmas 2 and 3, we have:

iy = —e;Ag", (29)
Pir = —eiAg Acy o, 17 (30)
Letus consider the vectofc, ¢, ,1*. Each one of its components are greater thaicc, > jecy_y A
that is, greater thap, . From the relations above, we have
Dir > N;ﬁi,l
which ends the proof. |

6 Bounding R in infinite models

In this section, we adapt the method described before to the case of an infinite staté apddinite
classes:;’s (implying thatM = oo). We assume thaX is ergodic. We also assume, of course, that
R < 0. Given that each class is finite, the cardinalityiofG) is also finite. Observe first that when
|S| = oo, the arguments used in Lemma 1 remain valid, proving here that from anyi sitetes is a
finite path toj in X ). Now, since the infinitesimal generator &f/) is the same as the infinitesimal
generator ofX except for a finite part af, necessank (/) is also ergodic, and therefore, with a single
positive recurrent class containingIn Appendix C, we show that the conclusions of Theorem 1 are
still valid in the infinite state space case. Moreover, siRce oo, we necessarily havB) < oo as
well. To see this, observe that if for soniee in(G) we haveRU0) = 7(0)rT = oo, then from the

expression

R=mnrt = Z ﬁjﬂ'(j)rT
j€in(G)
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we obtainR = oo, in contradiction with our starting assumption.
To simplify the analysis, we add the assumption that the transitions ffprto C'; are null if
I — J > 1. If this condition is not verified, the corresponding relations are more complex, but the
method still applies.
Assume that Conditions 1 and 3 hold. We can compute the starred bounds of previous subsection.
For eachj € in(G), let us define a new chaifi’) over the state spadg& U {c} with the same
transition rates thaX inside G. From anyg € G to c the transition rate is equal mg’g;gg as in
X(age  Frome to G, there exists a single non-null transition rate which is from j, denoted by

vj, and defined by
()

Mg
Sk 0
whereeg) =1and, forl > K,
AW AW
0(3') _ CKKA1 -1 (32)
I () (4)
K-+ Hp

Observe that sincd’ is assumed to be ergodiy, ; Hf,j) < 0.

Denoting byz(?) the stationary distribution of /), we have

Lemmab
20 = Z r{i)age
I=K

and forallg € G,

z;j) = Wg(yj)agg'

Proof. The proof is immediate by writing the equilibrium equations 16§68

Wg)agg)‘gj,lﬂ = ﬂgglalgg/’tfj—f)—b

which imply that

roes o) (e

In order to have the equalitst’) = 32 . 7198 we need

T
ViT S (§)agg
I=K Tecr
The result follows by writingrg)agg as a function oﬁggagg inthis lastrelaton. ___ ®H
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In the same way, let us define another irreducible Markov cHdift and its stationary distribution
2'U) over G U {c}, with the same rates than f&/) inside G and from anyg € G to c. The only

entry inG from cis j and the transition rate fromto j, denoted by/;., is defined as follows:

’ M;(
Vi = =3 (33)
T Y=k Y]
where
)\;F(K IA;F 1,1
VI > K, 0] = 58 =1 (34)
Hryr---Hp

Then, we have the following results:

Lemma 6 WhenY ") is built using rates\ ., andy}, I > K, we have

SON )
1=K

and forallg € G,
z’g(j) — yéj)-

Proof. The proof is as for Lemma 5. |

At this point, you should note thaé < vj, since
o0 o0
pie Y0 <pk y_ 07,
I=K I=K

and thatz/; is in fact independent gf because we use an upper bound\ﬁi\‘ which is independent of
j itself.

Let us come back to our bounds. Let us define aver {c}, the two reward vectors] and
r'2 obtained by completing vectay; with a reward on the aggregated statequal top; in r/1 and
denoted by in r'2. Since0 < g1 < oo, to obtain a lower bound oR we proceed exactly as in the
previous section. The problem can arise in the case 6f co. First, let us consider the case when

02 is finite.

Theorem 6 If g9 < oo, letr, be equal tage. Then, we have the following boundsraif

; "Del < R 35
min =z r N
j€in(Q) L= ( )
"(4) "T >R 36
max =z r .
j€in(Q) 2 = ( )
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Proof. From Lemma 6, we know that
20 = y@rd + (1 -y 9D(@)ar,

and
2Dt = yg)rT + (1 —49(G))os.

Then, the proof is identical to the proof of Theorem 4 |

Assume now thap, = oo and denote by., an upper bound of the rewards 6fa. Then we have

the following preliminary result:

Lemma 7 If po = oo, under the condition

Z H?)rcl < 00,
I=K

letting

oo pli) .
re. = max< max M ,maxr; o, (37)
j€in(G) Z?iKH?) i€G

an upper bound of the expected rewdtds

jg&)é) <;¥ zi(])ri + rcz§3)> > R. (38)
Proof. For anyj € in(G),
Tr(j)rT = Trg)rg + w(g)rT@
_ (J)agng +7T(J) rl
< miresl Z nli)oss

From the proof of Lemma 5r)%88 — ¢z s given thah 2 . 67)r,, < oo,
ayT < z( w(ase Z 9 Jre,.
From the definition of-., we have
T < zg)rg + z((:j)rc

Thus, obtaining an upper bound ©f allows us to derive an upper bound Bf as stated in the

next theorem:
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Theorem 7 If r} > r., then an upper bound of the expected rewAr

max (Zz rl—i—rz )>>R (39)

j€in(Q)
Proof. Consider the expression of()r,"
z/(j)rlzT e zlc(;])rg _|_ Z;(j)’rc

From Theorem 2, we have

2 =30

Using the remark abovey,; < v;, and Theorem 3, we also havé?)(G) < 2U)(G), and so,

20) > L0,

Then given that, > r;, Vi € in(G),
z(j)r/zT S z/(j)r/zT

It follows that

Z (Jr —|—rz <Z TZ+TC )

i€G 1€G
Then ifr} > r., we obtain (39). [

This tells us that if we can compute an upper bound.ofve have in the right hand side of (39)

an upper bound oR.

A particular case

Let us analyze what happens whkﬁ ; andp; are constant and respectively equaldt@nd .. A

condition for the stability of the model is given By< u. Denotinge = \/u, we have

] — 0 ,Vj:H(l_Q)-

In the examples that follow (7.2 and 7.3), we are in this particular case. We just have torpouitid

; >tk O1re; Z I-K
T, = Max | MaxXTrj, ——o0 —,; | = Max max 7, ( Y Ter | -
icG > 1=k 07

This is the technique that we will use to obtain bounds in the queuing models of next section.
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7 lllustrations

This section illustrates the efficiency of the bounding method proposed in the paper. First, we use a
standard dependability model, a “Machine Repairman Model”, which leads to a large finite Markov
chain that can not be handled by the technique published in [3]. The second example is an open
gueuing network composed by two queues in series, leading to an infinite Markov chain with no
known analytical solution. In this case, we bound the mean number of customers in each node. We
can observe that this model can not be handled by matrix-geometric techniques. The third example is
another open tandem of queues. Here, there are blocking mechanisms since we consider finite buffers
in all the nodes except the first one, and we bound blocking probabilities. These two open examples
can be transformed into closed versions by limiting the total allowed number of customers and in this

case, the conditions necessary to use the method of [3] do not hold neither, as in the first example.

7.1 Bounding the asymptotic availability of a MRM

Our first example is a standard multi-component system subject to failures and repairs. There are two
types of components. The number of components of kyisedenoted byV, and their time to failure
is exponentially distributed with parametgg, £ = 1,2. Think for instance of a communication
network where the components are nodes or lines. In such a system we can easily find a large number
of components leading in turn to models with huge state spaces.

After a failure, the components enter a repair facility with one server and repair time distributed
according to ai,-stage Coxian distribution for typemachines, with meam,. Type 1 components
are served with higher priority than type 2, and the priority is non preemptive. We assume that type 2
units are put immediately in operation when repaired, but that type 1 ones need a delay exponentially
distributed (with parameter) to come back to operation. Thus, in the model, type 1 customers go to
a second infinite server queue. This allows us to illustrate the method when the repair subsystem is
more complex than a single queue.

To define the state space, we uggrespectivelyn,) to represent the number of machines of type
1 (respectively?) in the repair queue; we denote kythe type of the machine being repaired (with
value 0 if the repair station is empty) and Bye the phase of the current service with< d < d,
(d = 0 if the repair station is empty). Denote by the number of machines of tydein transit (that

is, in the delay station). We are interested in bounding the asymptotic availability of the system. Let
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type 1

O
W repair facility < >
Y ——o0 0o ‘—%—» o
[elNelNe) O —_—

type 2

Figure 4: A Machine Repair Model

us assume that the system is operational as soon as there are aldéastmachines of typé and at
leastnMin, machines of typ& operating.
On statess = (n1,n9,d, k,n3) we have a Markov chain on which we consider the subsets of
state”'; defined by
Cr={s|n1+no+ng=1}
with 0 < I < N7 + N,. They define a partition of the state space. Observe that Condition 2 is not
satisfied and thus that the method in [3] can not be applied. On the contrary, Condition 3 holds.

Let us consider the following parameter values:

o N; =80, Ny = 120, nMiny =79, nMingy = 115, A1 = 0.00004, A2 = 0.00003, m; = mg =
1.0, d; = 6, d2 = 5 andu = 3.0. The size of the whole state spacé§$ = 4344921. Using

two small values of<, we obtain the following numerical results:

K |S2e¢| | Lower bound Upper bound
5 226 0.9997597121 0.9997597466
10 1826 | 0.9997597349 0.9997597349

¢ If we change the definition of operational system allowing 77 type 1 units as the threshold,

that is, if we changeaMin, to nMin, = 77, we have again a state spagewith cardinality
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|S| = 4344921 and for the same values &f we obtain

K |S2eg| | Lower bound Upper bound
5 226 0.9999999698 0.9999999852
10 1826 | 0.9999999841 0.9999999841

leading to a significant improvement of the availability of such a system.

As a technique to check the used software, let us consider the following situation. Let us keep the
previous example with the valuéé, = 80 and N, = 120. We consider Coxian distributions for the
repair times with 2 phases or stages (thatlis= d> = 2) but we choose their parameters in such a
way that they are equivalent to exponential service timeg; jfis the parameter of théth stage for a
type k component and if; is the probability that phaseis the last onelf, = 1), then for all phasé
we havev;, 4l; = 1/my, (technically, we put ourselves inserong lumpabilitysituation). Moreover, if
the scheduling of the repair facility is changed to preemptive priorities, then type 2 units are invisible
to type 1 ones, and with respect to type 1 components we have a product form queueing network.
Standard algorithms can then be used to compute, for instance, the mean number of type 1 machines
in the repair subsystem which we denoteMy. Using the QNAP2 product of Simulog, we obtain for
A1 = 0.00004, m; = 0.2 andp = 3.0, the valueN; = 0.0006404. Using our algorithm with' = 3
we obtain0.0006403 < N; < 0.0006413.

7.2 Bounding the mean number of customers in a two-node tandem

Consider the following simple open queuing network with 2 FIFO nodes (Figure 5). In this example,
customers arrive from outside according to a Poisson process with.rdsach queue has infinite
capacity and the service times at both nodes have the same Erlang distributio?states and

expectation equal t®/v.
— 00— 00—

Figure 5: A two-node open queuing network

We consider the usual Markov representation of the statéhis queuing systens, = (nq, dy, ns, d2),

with n; customers in nodé and phasel; in the server of node, i = 1,2, with the convention that

25



d; = 0if n; = 0. Let us define the partitio(C7)r>( of the state space with
CI = {(nl,dl,TLQ,dg) | ni +7’L2 = I}

This model does not possess a known closed form solution and it is not possible to solve it directly
due to its infinite state space cardinality. Moreover, given that Condition 2 is not satisfied, the method
in [3] can not be applied. The matrix-geometric approach [11] can not be used neither, since the state
space has a 2-dimensional structure and both dimensions are unbounded.

Let us apply our method to bound the mean number of customers in each node. In both cases, the
a priori boundp, on the rewards is infinite. First, we should note thas an upper bound olﬁ}j”l
for all I. Concerning the needed lower bound on thés, we use the regular structure of thg’s.
It is a matter of standard Markov analysis to verify that that for edgh/ > 1, the value ofu} is

obtained for staté/, 1,0, 0) and that this value is the same for evéryt is given by

w x W
M= = ot —n
If we seto = \/u*, we have
07 =o', andy; = (1 — Q)i

Observe that this model is stable for< v/2.
For instance, if we set = 1.0 andA = 0.18 < p* =~ 0.1892, we obtain that the mean number
of customers in the network is equal to 1 with an error less than 0.01, using less than 200 generated

states.

7.3 Bounding blocking probabilities in a three-node tandem

Let us consider the three-node open queuing network shown in Figure 6. Excepting node 1 which
has an infinite capacity, the two other nodes have a finite capacity of respectivdisizexl Hs.
Customers arrive at the first node according to a Poisson process with. rdtk the services are
exponentially distributed and the service rates are respecijiiely, andus. We also assume that all

the nodes implement a FIFO service discipline, and that there is a blocking-after-service behavior in
the first and second nodes. This means that when the second node is saturated, the first one blocks its
server after the end of the current service and until the departure of the customer being serviced in the

second one. Then, if the latter is not saturated, simultaneously a customer leaves the second node to
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the third node and another customer passes from node 1 to node 2. On the other hand, if the last node
is saturated, the second node as the first one blocks its server after the end of the current service and

until the customer serviced in the third node leaves the system.

O

total capacity H2 total capacity H3

Figure 6: A three-node open queuing network with blocking-after-service

Once a Markov process is build in the usual way, we partition the state space as before, dgfining
as the set of states correspondind taustomers in the tandem. As in the previous example, there is no
closed form solution [12] and the state space cardinality is infinite. Given the fact that queues 2 and 3
are bounded, it is easily verified that fbr> H, + Hs + 1, |C7| is constant. This allows us to simplify
the analysis by choosing aly > H, + Hs + 1 (note that if we had chosen somie< Hy + Hs + 1,
we still could have done the same by collapsing &l the aggregated stateswith I > Ho+ H3+1
and keeping statesy, . . ., cH,+ Hy+1). The stability condition associated with the Markov chain used
to bound the asymptotic measure$is;” | 0% < co. Given thatK > H, + Hz + 1, forall I > K,

;= pi andAj ., = A So, lettingo = A/, we have
AN\TK :
0] = ( . ) =% v =01 - ok
i
To illustrate the technique, we bound the following measures: (i) the mean number of customers in

the first node (this leads to a case with = oc), and (ii) the blocking probabilities in the first and
second nodes (for these measures, we have co).

Let us consider the following parameter valugs= 0.2, 1 = 0.7, us = 1.5, u3 = 0.2, Hy = 18
and H; = 10. After generating 3839 states, we obtain the value of the mean number of customers
in the first node with an absolute error less tham'?, that is, the difference between the computed
upper and lower bound is less thedT !°. The mean number of customers in node @ #00000000.

In the same way, we show respectively in Figure 7 and in Figure 8 the asymptotic probability of
having servers 1 and 2 blocked. As above, given that we are interesting in performance measures
with an absolute error less thaf—'°, we only plot the average between both computed bounds. The
probability of blocking of nodé is plotted as a function of the service rate of the corresponding server,
o, With (Hy, Hs, A, 11, pus) = (10, 8,0.1224,1.5,0.5) and the probability of blocking of nodeas a
function of ug, with (H1, H2, A\, i1, uo) = (18,10,0.1224,1.5,0.7).
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Figure 7: Probability of blocking of nodeas a function ofis
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Figure 8: Probability of blocking of node 2 as a function.gf
8 Conclusions

This paper proposes a new way of obtaining upper and lower bounds of asymptotic performability
measures, from finite or infinite Markov models. The asymptotic performability includes as particu-
lar cases the asymptotic availability in a dependability context, or standard asymptotic performance
measures such as mean number of customers, blocking probabilities, loss probabilities, etc. To be
applied, the method, as presented here, needs enough knowledge of the structure of the model in or-
der to be able to derive analytically or to evaluate numerically certain values which are necessary to
obtain the bounds. This is not always possible and current research aims to deal with this situation.
In any case, there are many models similar to the type of infinite queuing networks used in this paper
to illustrate the method, with no known closed solution and where, to the best of our knowledge, any

other available bounding techniques do not apply.
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A Proof of Theorem 1

Let us consider the irreducible and aperiodic stochastic matrigbtained by uniformization oft
with respect to the uniformization raté > sup; |A4;|, that is, matrixP = I + A/A. We have
7 = wP. Then, let us construct the mat} with the same size aB, such thatQ; ; = 0 for all
i € Cx andj € in(G), andQ;; = P;; in the other cases. Given that for &Jlj € S we have
Qi < F;j, Qis alower bound of°, that is a sub-stochastic matrix. We should note ¢hét a strict
lower bound ofP becauseP is irreducible. Thus matrix/ — @) is invertible [16, Chapter 1, p. 66].
Let us denote by (M) the polyhedron given by the set of convex combinations of the normalized
rows of the square matrik/. Observe that i is a stochastic matrix and# = = P, thenw € P(P).

Consider
P(I-Q) ") ={veR s | IBER s, BT = Lo =pS"1(1-Q) '}, (40)
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whereX ™! = Diag((I — Q)~'17)~! = Diag(oy) is the normalization matrix. We will denote by

2., 2(5D the vertices ofP((I — Q)~1).

Proof of Theorem 1 As for P, we consider the uniformization of/), denoted byP?!). Because of
the irreducibility of A, there exists an unique normalized veetdt) (Lemma 1), such that ) A0) =
0 andw pl) = £0),

From [1, theorem 8], it follows that /) belongs toP((I — Q)~'). We show thatr() is equal to
the jth vertex of P((I — Q)™ 1).

Lemma 8 Thejth vertex ofP((I — Q)™ ') is 7\,

Proof. We prove first the existence of a stochastic matrix such thajttheertex of P((I — Q)~!),
denoted by=(?) | is its stationary distribution. Then, we show that this stochastic matd¥’is To
start, let us introduce a new matix = Diag(1(I — Q)~!). By definition of z(9), there exists a
normalized and positive vect@(?) such thatz(9) = g x=1(1 — Q)~'. Vector3\) is defined by
ﬁi(j) =1lifi=7j andﬂi(j) = 0 in the other cases. Indeéd — Q)~! has full rank. That means that
each row of the matrix belongs to the base of the polyhedron. Let us consider the@atexqual to
5 wTEUIS!, wherecld) is a constant equal 8@ (1 — Q)@ 'wT andw is a positive
and normalized row vector.

Then we have the following relations:
20(Q+ V) =pIs (I - Q) (Q+CV) =20, (41)

and if we denotev™ = (I — Q)~'Q~ 17T,

Q+CNwT = (Q+CV)I-Q) ' T =wT. (42)
From [17, Theorem 5.4], matri% is similar to a stochastic matrix. That means there
exists a matrix” such that @-¢?) — 7-1p7 with B1T = 17T,

2(Q+CW)
Using the same arguments as in the proof of theorem [1, 8], we@ave' V) = PU),

At this point, from lemma above we know that?) = z() ¢ P((I — Q)~'). To prove The-
orem 1, we only have to show that belongs toP((I — Q)~'). As for () (in the proof of [1,
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theorem 8]) and given that(/ — P) = 0 and(P — @) > 0, there exists a normalized and pos-
itive vector 3 such thatr = BX (I — Q)~!. It follows that belongs toP((I — Q)~!) and

7 =) 589 20). Moreover from the expression af above, we have the following equality for
B: B ==(P— Q)X. Matrix (P — Q) is equal to a matrix whose columns are null excepted those
associated with the entry points @a. This means that the only non null elements@ére g; for

i € in(G). Then from Lemma 8, it follows that = > ) 890, u

jein(G

B Proof of Theorem 3

Let us first consider the exact aggregated Markov chain constructedXrdog collapsing the subset
G into a single statg, and each subsét; for I > K into a single state;. We denote the aggregated
transition rate frony to anycy, by A, 1, from anyc; tocy (for J > I) by Az 5, fromer tocr—y by pr
(I > K) and fromeg to g by px. Now consider a second Markov chain having the same topology
the first one, but such that the transition rates fignto c¢; whenJ > I, denoted beLJ, are upper
bounds of the corresponding rates in the first aggregation, and lower bounds in case of transitions
from ¢y to ¢y 1 or from ek to g (the respective values are denotedu';yl > K).

Let us denote by (respectively byv’) the stationary distribution of the first chain (respectively

of the second). Then we have:
Lemma9 vlg < v,.

Proof. Suppose tham; > v,. From the equilibrium equations, we can write that:

(ZJEK Ag,J)Vg

Ve = ’
12024

o (ZJEK )‘g,J)”g

Ve = y .
i

By definition, we know that, ; < X, ; andux < iy Thus it follows:

/
Ve, > Vege

Recursively, if we write for eaclh > K the equilibrium equations, similar results are obtained. That
is:

VI > K, ”/01 > v,
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Then given thav is a stationary distribution, we have:
v+ Y v, >1
I>K

This means the first assumption is false |

In the same way, let us consider the two exact aggregated Markov chains constructed, as above,
from X ()22g and fromY (), by collapsing the subsé€t in a single statg. Given that there is a single
point to enter inGG from G, the aggregated rate from to g in former chain (respectively in the latter
chain), is equal to the transition rate framto j in X ()22 (respectively it (). The transition rates
from g to anyc; in the two new chains are given by the following expressions:

_ ~(j)agg 4(d)age
Ag, 1 = E :WG,z' Az‘,c, )
ieG

Z 70) 40U)age
yG’ i“ e
1€G

By construction ofX (/)228 andY (9), the restriction of their respective infinitesimal generators to the
subset are identical. From Theorem 2, we have the equality between the two conditional vectors
A(J)“gg, §(G) That means that

)\97[ — )‘g,l'
Moreover the transition rates between the other aggregated states are the saniéla%4nand
Y. Let us denote byréj )288 (respectively byyéj )), the stationary probability of being in stage
for the exact aggregated matrix obtained frafff)228 (respectively fromt (9)). Thus, the conditions

required to apply Lemma 9 are verified. It follows:

ng)agg > ygj).

The fact thatzréj)agg = rl)aeg(@) andyéj) = yU)(G) (same results as (7)), ends the proof.

C The existence of I — Q)™

To apply Theorem 1 in the infinite state space case, we assume first that the process is uniformizable.

Next, observe thaf(?) is also uniformizable and ergodic (recall thatis always finite). It only
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remains to show that matri¥ — Q) is invertible. To do this, let us first recall the block structure of
Q:
0 Pg

Q=

One way to obtain the existence of inversg bf- Q) is to consider each block separately. Given that
the only infinite blocks inQ are P~ and Py, we just have to show thdt— P is invertible. This
can be done by means of standard results as presented in [18]. /$irisea sub-stochastic matrix,
the sum/ + P + P(% + - - is finite and sub-stochastic. Using [18, 6.4.5]fif denotes the vector
defined by

fi= lim > (P2ij,

jEG
we have thatfT is the maximal solution of the linear systeet = PszT, with 0 < x; < 1, and
either f; = O for all ¢, orsup,. f; = 1. SinceX is irreducible and have only positive recurrent states,
the system of linear equations above, have a unique solution verifyirg 0 for all 7 [18, 5.3.29].

This means that the matriX~ verifies:

lim PA1T =07

n—oo

Given that all the elements @t are positive, it follows that
lim P =0,

n—oo

which is a sufficient condition for the convergence of the series.
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