NUMERICAL SOLUTION of MARKOV CHAINS, p. 191-206

Algorithms for an irreducible and lumpable strong stochastic

bound

J.M. Fourneau, M. Lecoz, F.Quessette !

1 PRiSM, 45, avenue des Etats-Unis,
Université de Versailles St Quentin en Ywelines,
78000 Versailles, FRANCE

KEY WORDS: Stochastic Bounds, Lumpabillity, Stochastic Monotonicity

ABSTRACT

Despite considerable works, the numerical analysis of large chains remains a difficult problem.
Fortunately enough, while modeling computer networks, it is often sufficient to check if the studied
mechanism satisfies the requirements of the Quality of Service (QoS) we expect and exact values of
the performance indices are not necessary. So we advocate a new method based on the algorithmic
derivation of a lumpable stochastic bounding matrix to analyze large state-space problems. Because
of the lumpability, the numerical analysis deals with smaller matrices. The stochastic bounds provide
upper bounds for performance indices defined as reward functions. Our work is purely algorithmic and
algebraic and does not require proofs based on the sample-path theorem and coupling (see [15] for
some examples). We present the algorithm, its complexity and memory requirements and an example.

1. Introduction

Our modeling ability has been improved by the tensor representation and composition methods
introduced by Plateau [12] and generalized to several high level formalisms (see for instance
among many others: Stochastic Petri nets [7]). But our analysis techniques remain roughly
the same despite considerable works [14, 17]. Fortunately enough, while modeling high speed
networks, protocols or computers, it is often sufficient to check if the proposed mechanism
satisfies the requirements of the Quality of Service (QoS) we expect. Exact values of the
performance indices are not necessary in this case and bounding some reward functions is
often sufficient.

Several methods have been proposed to bound rewards: resolution of a linear algebra problem
and polyhedra properties by Courtois and Semal [5] recently adapted to Stochastic Automata

Contract/grant sponsor: Research supported in part by ACI ; contract/grant number: Sure-Paths

192 J.M. FOURNEAU, M. LECOZ, F. QUESSETTE

Networks by Buchholz [4], Markov Decision Process by Van Dijk [18] and various stochastic
bounds (see [15] and references therein). Our method is based on the comparison of sample-
paths of Markov chains but it is purely algebraic and algorithmic. Thus the approach we
present can be easily included inside software tools based on Markov chains. Unlike former
approaches which are either analytical or not enough constructive, this new approach is only
based on simple algorithms. These algorithms can always be applied, even if the bounds may
be sometimes not enough accurate. These algorithms extend Vincent’s algorithm [1] to several
aspects : first to insure irreducibility, and mostly to build a matrix easier to solve. Indeed,
the matrix obtained by Vincent’s algorithm is as difficult as the original one to analyze. Our
algorithms provide a way to design an irreducible lumpable upper-bound for an arbitrary
partition and a quite general transition matrix. Ordinary Lumpability is an efficient technique
to combine with stochastic bounds [2, 16] as a lumped matrix is much simpler to analyze than
the original one due to the state space reduction. We also take advantage of some features of
the algorithm to avoid to keep the matrix in main memory. In [2], we have presented some
applications of this method. Here we present the theorems, the proofs and the algorithms
implementation. Let us now review briefly the methodology.

First we have to build on disk a transition matrix P for the problem we want to study. Let
n be the size of the state space. n is assumed to be very large (i.e. n > 10°). The storage
of P has to be made in a suitable form to help during the bounding process. The main idea
is to chose heuristically a partition which implies a large reduction of the state space and
may provide an accurate upper bound. We expect that the availability of bounding algorithms
associated to numerical softwares will help in the future to design good heuristics. Then the
algorithm builds an upper bound R of the transition matrix P. This upper bound is lumpable
and the lumped version is stored on disk. The initial matrix P is never in memory and only
two vectors of size n are stored in memory during the execution of our algorithms. Thus the
main algorithm may even be used to bound a matrix which does not fit in memory. As the
lumped matrix size is much smaller, matrix R may be analyzed with usual algorithms. In the
typical example we present, the lumped chain has less than 50.000 states and the numerical
results already obtained looks accurate enough for our problem.

The following of the paper is organized as follows. First in section 2, we briefly present
the stochastic comparison of sample-paths and a sufficient algebraic characterization of the
transition matrices of the Markov chains. In this paper we restrict ourselves to Discrete-Time
Markov Chains but models in continuous time can be handled after uniformization. We also
show in section 2 a basic algorithm (IMSUB) which deals with the irreducibility of the
bounding matrix. Indeed as the matrix is too large, one cannot check the irreducibility of
the bound after it has been computed. One must take advantage of the irreducibility of the
initial matrix and design the algorithm to be sure that the resulting matrix is still irreducible.
We chose to address the irreducibility problem first to simplify the proofs. Also, Algorithm
IMSUB may be the root for other algorithms based on various structures for matrices. Section
3 is devoted to the presentation of the real algorithm, its proof, its implementation using only
two vectors in memory. Then, in section 4, we present an application of this algorithm to the
computation of the loss probabilities in a shared buffer with the Round Robin service discipline
and the Pushout memory access algorithm.

ALGORITHMS FOR AN IRREDUCIBLE AND LUMPABLE STRONG STOCHASTIC BOUND 193

2. An algorithmic presentation of stochastic bounds

First, we give a brief overview on stochastic ordering for Discrete-Time Markov chains and
we obtain a set of inequalities to imply bounds. Continuous-time chains are handled after
uniformization. Then we present a first algorithm derived from the basic one [1]. This first
step provides an irreducible matrix. Then we show in the next section how to modify this
algorithm to provide a lumpable matrix.

2.1. A brief overview of comparison of Markov chains

In [15], the strong stochastic ordering is defined by the set of non-decreasing functions.
Important performance indices such as average population, loss or tail probabilities are non
decreasing functions. Therefore, bounds on the distribution imply bounds on these performance
indices as well.

Definition 1. Let X and Y be random variables taking values on a totally ordered space.
Then X is said to be less than Y in the strong stochastic sense, that is, X <g Y iff
E[f(X)] < E[f(Y)] for all non decreasing functions f whenever the expectations ezist.

For an algorithmic or algebraic presentation, the following definition is much more
convenient. In the following, n will denote the size of matrix P and P;, will refer to row
iof P.

Definition 2. If X and Y take values on the finite state space {1,2,...,n} with p and r as
probability distribution vectors, then X is said to be less than Y in the strong stochastic sense,
that is, X < Y iff Z?:kpj < E;:k rj fork=1,2,...,n.

The main idea of the sample-path comparison of Markov chains is to prove that the initial
ordering of the two distributions at time 0 will be preserved along the path to obtain an upper
bound for the steady-state. As we assume that the matrix of the problem does not satisfy
any particular property (except irreducibility), all the constraints and the properties must be
verified by the upper bounding matrix created by the algorithm. It is known for a long time
that monotonicity [11] and comparability of the one step transition probability matrices of
time-homogeneous MCs yield these sufficient conditions.

Definition 3 (Comparability) Let P and R be two stochastic matrices, P <s R iff for all
i, we have P, . <g R;. (we consider the rows of P and R as vectors).

Definition 4 (Monotonicity) Let P be a stochastic matriz, P is st-monotone iff for all u
and v, if u <g v then uP <4 vP.

Hopefully, st-monotone matrices are completely characterized, and again we obtain some
algebraic constraints. The fundamental theorem states that these conditions are sufficient [15]:

Theorem 1 (Stoyan) Let X (t) and Y (t) two DTMC and P and R their respective stochastic
matrices. Then X (t) <g Y (1) if

b X(O) <st Y(0)7
e st-momnotonicity of at least one of the matrices holds,
o st-comparability of the matrices holds, that is, P; . < R; . Vi.

194 J.M. FOURNEAU, M. LECOZ, F. QUESSETTE

Proof: By induction on ¢:

Assume that X (t) <4 Y'(¢) (true for t = 0)

As P <4 R we get: X(t)P <4 X(H)R

Assume R is st-monotone, as X (t) <s Y (t) we have: X (t)R <s Y (t)R
Thus, X (t)P <5 Y (t)R

After identification X (¢t + 1) <z Y(t + 1)

Property 1. Let P be a stochastic matriz, P is st-monotone iff for all i, j > i, we have
Piw <st Pjx

Thus, assuming that P is not monotone, we obtain some inequalities on the elements of R :

{Zz_jpi,k < Y, Rik Vi, j (1)
YhejRik < Yo Ririe Vi

It must be clear from these relations that it is quite simple to obtain a st-monotone upper
bound of P using the degrees of freedom provided by these inequalities. We use them to insure
that the bound satisfy some properties useful for the analysis : irreducibility and lumpability
(see [2, 8] for other properties and algorithms).

2.2. An Algorithm for an Irreducible Upper-Bound

The simplest idea consists in using a set of equalities, instead of inequalities. These equalities
provides, once they have been ordered in increasing order for i and in decreasing order for j
in system (2), a constructive way to design a stochastic matrix R which yields a stochastic
bound for matrix P: this is Vincent’s algorithm [1].

{ZZ:le,k = ZZ:jPI,k Vi,j (2)
Shej Rk = mae(Ci; Rik, > Piv1k) Vi, j

Or, if we assume, as usual, that Ef is always equal to zero when j < 4, and that all the
elements of the matrix with index outside (1..n) are all zero, we get a simple relation for all
indices ¢ and j:

n n n
R; ; = max E Ri_1k, E P |- E R
k=3 k=j

k=j+1

Vincent and his coauthor have observed that the matrix they computed may be reducible.
Indeed, some elements of R may be zero even if the elements with the same indices in P are
positive. It is very important to avoid transition deletions because the state space is so large
that it is really impossible to check the reducibility of matrix R once it has been computed.
We assume that the irreducibility of matrix P is proved using a high level formalism which
allows to specify the transition matrix and the reachable states. So it is very important that
matrix R obtained by the automatic derivation of the bound is still irreducible.

ALGORITHMS FOR AN IRREDUCIBLE AND LUMPABLE STRONG STOCHASTIC BOUND 195

stepl: Forl=1,2...,nDo

step2: Fori=23,...,nDo
| Ti,n = Max(Ti—1,n,Pi,n)
End For
step3: Forl=n—-1,n-2,...,1 Do
Fori=23,...,n Do

step 3.a : riyg = max(0, max(Q7_ ric1g, D i Pit) = Diyy Tig)
step 3.b : If (riy = 0) and (Z;:Hl rij < 1) and ((piy > 0)or(i =1 — 1)) Then
| Til =€ X (1 - Z;‘L:l+1 T‘i,j)
End If
End For
End For

Figure 1. Algorithm IMSUB: Construction of an irreducible st-monotone upper bound

We have derived a new algorithm (called IMSUB) and we have proved a necessary and
sufficient condition on P to obtain an irreducible matrix R. This algorithm is based on three
main ideas: respect the basic inequalities (1), avoid the unnecessary deletions of transition and
force the elements of the sub-diagonal to be positive. For the sake of simplicity and to emphasis
the relations with inequalities (1), we use a matrix representation for P and R and we use the
summations E?:l ri—1,; and E?:l 41 Ti,j- We know that they are already computed when we
need them due to the the ordering of the indices. Of course the real algorithm presented in
section 3.3 uses a sparse matrix version and it only keeps in memory two vectors of size n to

n n
store Ej:l Ti—1,j and Zj:l—i—l Ti,5-

Theorem 2. Let P be an irreducible finite stochastic matrixz. Matrix R computed from P by
Algorithm IMSUB is irreducible iff P11 > 0 and every row of the lower triangle of matriz P
contains at least one positive element.

Proof: The assumptions are clearly necessary (see Fig. 2 for the effects of IMSUB on
the elements). The irreducibility follows from lemma 3. The relations (1) are satisfied, thus
the matrix is a monotone upper-bound. Let us begin by two technical lemmas to prove the
irreducibility. The key idea of the proof is the following. The main characteristic of the
algorithm is based on the monotonicity of R. The indices of the last (the rightmost) non
zero elements in rows of R form a non decreasing sequence while it is not true for matrix P.
Such a property is also satisfied by the indices of the last (i.e. leftmost) non zero element in the
rows of R (see Fig. 2 where the boundaries of non zero elements for P and R are represented
by solid lines). These two lines also give a rough boundary for the computations required for
R.

Definition 5. Consider an arbitrary matriz R, let us denote by nF (resp. k2) the first (resp.
last) positive element in row i of matriz R.

Lemma 1. If P ; # 0 and every row of the lower triangle of matriz P contains at least one

positive element, then for all i > 2 we have nf = max(nf,nf |) and kF = max(kF, k2).

196 J.M. FOURNEAU, M. LECOZ, F. QUESSETTE

L

Figure 2. Filling of Matrices P (left) and R (right), the dotted lines in R represent the boundary in P

P

Proof : As P and R have constant row sum, relations (1) imply that nf > n! and

nft > nft . Therefore nf > max(nf,nf).
Assume now that nf > max(n!’,nf ;). We will show a contradiction. Let us compute R; ,r

using step 3.a and consider the two following cases:

o max(37 n Rio1j, 2 5 pr Pij) — 2j_nqq Rijj < 0. Then we use step 3.b to give a
value to R; ,=. This value may be €(1 — E?:nﬁﬂ R; ;) or zero, if the test fails. As e <1,
we get Z;}:n? R;,j < 1; a contradiction.

° max(z;b:n:z Ri_1;, Z_?:nf P,;) — z?:nf+l R;; > 0. Then, Step 3.b is not
used and Step 3.a implies that: 37 r Ri; = max(37 .= Rio1,5, 27 nr Pij)-
As nft > max(nf,nfl,), we get 37 r Ri-1; < 1and 37 » Pij < 1. Therefore,
Z;‘:nﬁ R; ; < 1; again a contradiction.

Thus we have nft = max(nf,nf ;). The proof of the other relation is omitted as it is quite

similar to the first one. O

Lemma 2. If Pi; # 0 and every row of the lower triangle of matriz P contains at least
one positive element, matriz R computed by algorithm IMSUB satisfies the same properties.
Furthermore, all the transitions in the upper triangle of P still exist in the upper triangle of
matriz R.

Proof: First, Step 1 of the algorithm implies that R, 1 = P, i, therefore R; 1 # 0.

Now let us restate the second assumption: Vi in (2..n), we have n!’ < i. Following lemma, 1,
we have nf! = max(nF,nf). As nf =1 and nF’ < i, a simple induction proves that n? < i
for all ¢ > 1.

Let us now turn to the last property. As nff < i for all i > 1, we have Z?:l R;; <1 for all
[> i. Therefore the test is Step 3.b is always true when we consider a transition in the upper

diagonal of the matrices. O

Lemma 3. If P is irreducible and P, 1 > 0 and every row of the lower triangle of matriz P
contains at least one positive element, then matriz R is irreducible.

Proof: Let x be an arbitrary state, we prove that there is a path in R from 1 to z and from
z to 1. By Lemma 2, we proved that every row of the lower triangle of matrix R contains at

ALGORITHMS FOR AN IRREDUCIBLE AND LUMPABLE STRONG STOCHASTIC BOUND 197

least one positive element, there is no destruction of any transition on the upper triangle of
matrix R and the elements of the sub-diagonal are positive. Thus there is a path from z to 1
going through the transitions of the sub-diagonal.

Furthermore as P is irreducible, there exists a path from state 1 to state z in matrix P.
This path can be divided into 2 kinds of transitions : those in the upper triangle (a transition
from a state ¢ to a state j with ¢ < j) and those in the lower triangle (¢ > j). Transitions
of the first type are not deleted in matrix R. The other type of transitions can be deleted
by the algorithm, but they can be replaced by the path from i to j using transitions of the
sub-diagonal of R. O

3. An Algorithm for a Lumpable and Irreducible Upper Bound

In section 2, we have addressed the irreducibility problem. Let us now turn to the lumpability
constraint. Lumpability implies a state space reduction before the numerical analysis. The
algorithms are based on Algorithm IMSUB and on the decomposition of the chain into
macro-states. Let r be the number of macro-states. Let A;..A, the partition of the states we
consider. Again we do not assume that P is lumpable according to this partition, but we build
algorithmically a lumpable matrix which is also an upper bound of P for the “st” order. First,
let us recall the characterization of ordinary lumpable chains [3].

Property 2 (ordinary lumpability) Let R be the matriz of an irreducible finite DTMC,
let Ay be a partition of the states of the chain. The chain is ordinary lumpable according
to partition Ay, iff for all states e and f in the same arbitrary macro state A;, we have
> jeay Bej =2 jca, Ry for all macro-state Ay.

3.1. Presentation of the Algorithm

We assume that the states are ordered according to the macro-state partition we consider.
This is the main assumption. Let b(k) and e(k) be the indices of the first state and the last
state, respectively, of macro-state Aj. Clearly, lumpability constraints are consistent with the
st-monotony. The algorithm computes the matrix column after column. Each block needs two
steps (see Fig. 3 and Fig. 4). The first step is based on Algorithm IMSUB while second step
modifies the first column of the block to satisfy the lumpability constraint.

01 04(01 02 0.2
02 01(01 04 0.2

P=|01 06[02 01 0.0 (3)
02 0001 02 05
0.0 0.1‘0.5 0.1 0.3
0.1 02 0.2 03 02 0.2
0.1 0.4 0.2 0.1 0.4 0.2
Pl = 01 04 02| P2= 0.1 04 0.2 (4)
0.1 02 05 02 02 05
02 02 05 ‘0.2 02 05

More precisely, the first step uses the same relations as Algorithm IMSUB but it has to
manage the block structure and the fact that the first row of R and P may now be different

198 J.M. FOURNEAU, M. LECOZ, F. QUESSETTE

due to the second step of the algorithm. The lumpability constraint is only known at the end
of the first step. Remember that ordinary lumpability is due to a constant row sum for the
block. Thus after the first step, we know how to modify the first column of the block to obtain
a constant row sum. Furthermore due to st-monotonicity, we know that the maximal row sum
is reached for the last row of the block. In step 2, we modify block after block the first column
of the block taking into account the last row sum.

Consider matrix P in Eq. 3 to illustrate the behavior of the algorithm. Assume that we divide
the state-space into two macro-states: (1,2) and (3,4, 5). We show the last three columns after
the first step (P1 in Eq. 4), and after the second step (P2 also in Eq. 4). Remark that, during
the second step P2; 3 and P24 3 have been changed such that the two blocks now have constant
row sum.

stepl: Form=rr—1,.1 Do For i =1,2,..n Do
For | = e(m),..b(m) Do step 2.a : | ri; = max(0, max(z;;l Tic1,j, Z?:xpi,l) - Z;=1+1 Tij);
step 2 : | refreshSumR(l) End For
End For step 2.b i If (riy = 0) and (X7, rij < 1) and ((pis > 0)or(i = | — 1)) Then
step 3 : normaliseR (r) | ra=ex (=307, i)
End For End If

Figure 3. Algorithm LIMSUB : Construction of an ordinary lumpable irreducible st-monotone upper
bounding DTMC R (left) and method refreshSumR() (right)

For y=1,..r Do
. — el .
step 3.a : c= Zj:bm Te(y)i }
step 3.b : For i = b(y),...,e(y) — 1 Do
— e(r) .
| riaem == X0y s
End For
End For

Figure 4. Algorithm LIMSUB : method normaliseR()

3.2. Proof of the Algorithm

Remember that the irreducibility of a lumpable matrix implies the irreducibility of the lumped
version of the matrix [3].

Theorem 3. Let P be an irreducible finite stochastic matriz, let Ay...A, a partition of the
state-space. If the upper left block of P follows the assumptions of lemma 1 and if for all
state i in 1..n, there exist a transition to state j such that i € A, and j € Ay and y < z, then
Algorithm LIMSUB computes an irreducible upper bound for the “st” order which is lumpable
according to the partition.

Proof: The irreducibility follows from lemma 5. Relations (1) are clearly satisfied, thus
the matrix is a monotone upper-bound. The lumpability is obtained by steps 3.a to 3.b in the

ALGORITHMS FOR AN IRREDUCIBLE AND LUMPABLE STRONG STOCHASTIC BOUND 199

algorithm. Indeed, we compute in Step 3.a the row sum for the last row of the block. As matrix
R is st-monotone, the row sum is non decreasing and the maximal row sum is obtained from
the last row of the block. Then we modify in Step 3.b the first column to obtain constant row
sums. Therefore the matrix is lumpable and is an irreducible upper-bound. O

Lemma 4. Consider an arbitrary partition A;..A,.. Assume that P follow the assumptions of
theorem 3, then:

o nf =1 and for alli € Ay, i > 1 we have: nf < i
e for alli € Ay, with k > 1, we have: nft < b(k) < i

Proof: let 2 be the first (the leftmost) positive element in row 4 of matrix R after Step
2.a and 2.b (before the last normalization in steps 3. As the assumptions of theorem 3 are
stronger than the ones used in Lemma, 1, and as Steps 2 of Algorithm LIMSUB are exactly
the same as in Algorithm IMSUB, we can apply Lemma 3:

z' = max(n;, z%,) (5)

Furthermore we have 2f* =1 and 2 < i for all i > 2. But as Steps 3.a to 3.b are not used
for A;, we have: 2/t = nF for all i in A;. The first two results are then obtained directly from
lemma 3.

The second property is proved by induction on the index of the macro-states. During Steps 3
of algorithm LIMSUB, the last elements may be moved to the right. Thus index nf is bigger
than zf for all i. But the last row of block A, is not modified during this steps. Therefore we
have for every state index i and block index z: 2{* < nft and 2[f,) = ni,). As b(z+1) = e(z)+1,

R

we obtain: zﬁw) = max(nf(w), "f(x—n)- Due to the monotonicity, indices n?

Let us now turn to the initial part of the induction (i.e. z = 2).

are not decreasing.

zl{t(,z) = max(nf(z), nf(l))

The assumptions of theorem 3 show that n{” < b(2) for all i € A>. We also have nlf,) < e(1) <
b(2). Thus z,f%Q) < b(2). Relation 5 implies that this last inequality is true for all states in A,.
Thus zf(’Q) < b(2).

As zf('2) = nf@), clearly we have nf@ < b(2), and nf < nf(z) for all 4 in A,. Finally,
nf < b(2) for an arbitrary state in As.

The induction from macro state index z to = + 1 follows exactly the same scheme and is
omitted for the sake of readability. Finally b(k) < 4 follows from the definition of the block. O

Lemma 5. If P satisfies the assumptions of theorem 3, then matriz R is irreducible.

Proof: First, lemma 4 implies that for all state index i > 1, we have nf < i. Thus the test
in Step 2.b is true for elements in the sub-diagonal of R and we know that these elements are
positive. Similarly, the positive elements of the sub-diagonal of P are still positive in matrix
R even if they have been changed. The end of the proof is the same as for Lemma 3 and is
omitted. O

Note that the block by block computation also provides a nice property for matrix @ (see
[2] for a proof).

200 J.M. FOURNEAU, M. LECOZ, F. QUESSETTE

Theorem 4. Let R be an st-monotone matriz which is an upper bound for P. Assume that R
is ordinary lumpable for partition Ay and let R™! and P™! be the blocks of transitions from
set A, to set A; for R and P respectively, then for all m and I, block R™' is st-monotone

3.3. Complexity, Memory and Implementation Details

We now present how to implement Algorithm LIMSUB, how to minimize the number of
vectors in memory and we give some information about the number of operations. We consider
a matrix P of size n and a partition of the state-space into r macro-states Ai,..., A,. From
the presentation of the algorithm (see again Fig 3), it must be clear that it is possible to
implement the column per column version of the algorithm with only one column of matrix P
in memory at a time. Thus, we only use two vectors of size n, sumP and sumR to represent
respectively sumPl[i] = >°,_; Pij and sumR[i] = 3_}'_; R; ;. Furthermore, we need a linked
list listIndiceP to represent the values and the row indices of non zero elements of column j
of P. The value of R is not stored. Instead we store the current column of the lumped matrix
; this requires a vector of size r to store the elements lumpeeR and another vector of the same
size to compute them : sumLumpeeR which contains the sum : >, _ ; Rl j) where Rl is the
lumped matrix.

Finally we need to define the partition by the first and last indices for each macro-state
(the vectors e() and b() in Algorithm LIMSUB). Only one of these vectors is in memory, the
other one is a macro definition which simplifies the presentation of the algorithm.

Vector sumR is increasing because R is monotone. Therefore, we use a vector to store sumR
but we add two indices for the first non zero elements and the last element smaller than 1.
These indices specify the boundary of the loops to avoid unnecessary computations. Let us
now turn to the two main methods used in LIMSUB: refreshSumR/() and normaliseR/().

addColumnP()

For i = indiceP, . .. ,indiccEndR Do

Ifi == 0 Then

| val = maz (0, sumP[0] — sumR|[0])

Else

| val = maz (0, maz (sumP[i], sumR[i — 1]) — sumR][i])
End If

If (val == 0)and(sumR][i] < 1)and(exist(i)or(i == numColumn + 1)) Then
| wal=e- (1 — sumR[i])

End If

sumR[i] = sumR[i] + val

End For

Figure 5. function refreshSumR()

refreshSumR) : This function reads a line in the file containing matrix P in a sparse
representation. Each line of this file describes a column of the matrix : the first line corresponds
to the last column, the last line to the first column. While reading the line, one stores the
indices in array listIndiceP, one adds the values in array sumP, and one computes indice P
and indiceR. Then one proceeds to the main computation (described in figure 5).

ALGORITHMS FOR AN TRREDUCIBLE AND LUMPABLE STRONG STOCHASTIC BOUND 201

Let wf be the index of the first non-zero element of column j in matrix P, Step 2.a of
algorithm LIMSUB leads to R;; = 0 for ¢ = 1,..., wf — 1 and step 2.b is used when
i = j + 1. Therefore the lower boundary indiceP, of the computation loop is the minimum
between w and j + 1, Similarly, as sumR is non decreasing and smaller than 1.0, it is not
necessary to compute the elements once the summation reaches 1.0. They are all equal to zero.
We have to compute elements R; ; from IndiceP to IndiceEndR (the index of the last element
of sumR smaller than 1).

normaliseR() : For each column, indiceP gives the index from which we have to modify
sumR. Step 3 fix for all lines i of a same macro-state r sumR][i| = sumR][e(r)].

For macro = getMacro(indiceEndRNorm), ..., getMacro(indiceR) Do
compute e(macro), b(macro)
max = sumR[e(macro)]
If maz # 0 Then
For j = e(macro) — 1,...,b(macro) Do
| sumR[j] = maz
End For lumpeeR[macro] = mazx — sumLumpeeR[macro]
If lumpee R[macro]! = 0 Then
nbrElements++
nbrValues++
sumLumpeeR[macro] += lumpeeR[macro]
End If
Else
| break
End If
writeR()
End For

Figure 6. function normaliseR()

The complexity of algorithm LIMSURB is given by the sum for all columns of the number of
operations in functions refreshSumR() and normaliseR(). This complexity is quite difficult
to evaluate because it is dependent on the index of the first non zero element in each column
and the index where the summations of elements of R reach 1.0 (a very specific characteristic
of our algorithm). Clearly the worst case complexity is O(n?) but in all the cases we have
observed the real complexity of LIMSUB is much smaller. Morerover a fundamental result
for Algorithms IMSUB and LIMSUB allows to compute the number of operations before
we use the algorithm. Indeed, the numbers of elements of R which are computed is equal to
the area between the two solid lines in the right part of Fig. 2. The two edges are given by the
induction relation allready obtained. We show this property for algorithm IMSUB which is
a little bit simpler (the generalization for LIMSUB is omitted).

Property 3. For Algorithm IMSUB, the number of operations is in O(37_, (kf' — nf')).
Both sequences are obtained by the induction relations proved in Lemma 1.

Then for some matrix type, it is possible to get a better estimate of the complexity:

202 J.M. FOURNEAU, M. LECOZ, F. QUESSETTE

Property 4. Assume that matriz P has a band structure of size b, then matriz R has the
same structure and the number of operations of LIMSUB is O(n b)

Note that this implementation of the algorithm does not take into account that P is sparse
and that vectors of P are linked lists. So, we have developped a better implementation of
this algorithm (LIMSUB 2) which avoids unnecessary computation of zero elements of R. We
present in the next section some experimental results for these algorithms.

It is possible to obtain an estimate or an upper-bound of the computation time before the
real computation takes place If this number is too large, we have to design a new partition
or a new ordering of the macro-states to speed-up the computation. It must be clear that
the assumptions of theorem 3 take into account the transition matrix, the partition and the
ordering of the states. The ordering must be consistent with the block decomposition and with
the rewards which must be a non decreasing function of the state index (because of the “st”
majorization). Thus the partition has to be carefully chosen.

Once we have designed a partition and reordered the states according to this partition,
one must check the rewards. If this last assumption is not satisfied, we can replace the initial
reward function w(i) by another one which will be always larger and which is consistent with
the ordering. Let s(¢) be this new reward function, it is sufficient to have : s(1) = w(1) and
s(i) = maz(w(i), s(i — 1)).

4. Loss Rate in a RR Queue with Pushout Algorithm

We consider a finite queue and a buffer policy which combines the PushOut mechanism for the
space management and the Round Robin service discipline. We assume that there exist two
types of packets with distinct loss rate requirements. In the sequel, we denote as high priority,
the packets which have the highest requirements, i.e., the smallest loss ratio. The PushOut
mechanism specifies that when the buffer is full, an arriving high priority packet pushes out
of the buffer a low priority one if there is any in the buffer. Otherwise the high priority packet
is lost. A low priority packet which arrives in a full buffer is lost. If the buffer is not full, both
types of packets are accepted. The buffer size is B. Arrivals of both types of packets follow
Poisson processes with rates Ay and Ay

For the sake of simplicity, we assume that both type of packets have the same service time
which is exponentially distributed with rate u. The scheduling algorithm is Round Robin (RR),
a simple discipline which exhibits good fairness properties. A simple generalization (Weighted
Round Robin) may be an efficient mechanism for Diffserv architectures and Internet. The
association of Pushout memory access and Head Of Line service discipline has already been
proposed and analyzed for ATM networks [10]. However the analysis is based on approximation
whose accuracy is quite impossible to check for large buffers and very small loss probabilities.

4.1. The Model and the Rewards

The description of the state space is multidimensional : (T, H, RR), where T is the total
number of packets, H is the number of High priority packets and RR is the scheduler state
which shows the type of packets to serve. This representation is unusual for a queue with two
types of customers but it is more convenient [8].

Of course we have H < T and the number of reachable states is (B + 1)(B + 2) Clearly we

ALGORITHMS FOR AN IRREDUCIBLE AND LUMPABLE STRONG STOCHASTIC BOUND 203

a high priority packet
"pushes-out" a low priority packet

L —

Poisson Deterministic
arrivals of high service time
and low priority packets

the low priority
packet is lost

Figure 7. The Pushout mechanism

Figure 8. Non zero elements in the initial matrix (left) and in the bound (right) given by IMSUB

have a continuous-time Markov chain with at most three transitions for every state (arrival of
a high priority cell, arrival of a low priority cell, service of a cell). We want to compute the
probability of loss for high priority packets. Due to the Pushout, an arriving packet is lost if
the buffer is full of high priority packets. Therefore we want to compute = (B, B,l)+x(B, B, h).

First we must perform an uniformization to obtain a discrete-time chain. We use a non zero
uniformization factor. Thus, the uniformization process adds a new transition for every state
in the chain: a loop. Then, the maximal degree is 4. The possible transitions for a RR queue
with Pushout are gathered into table I. As usual, X + + (resp. X — —) means incrementation
(resp. decrementation) of X.

Note that when the queue is empty (i.e. T' = 0), it is not necessary to represent explicitly
the state of the scheduler (i.e. H or L). However we keep both states in the model and we add
the last transition (i.e. list processing). This transition states that when the queue is empty
we continue to toggle the scheduling state. This transition is exponential with rate p (i.e. like
the service rate). This transition has no effect on the performance of the system as the arrival
of the first packet will change again the scheduler. These states and transitions are necessary
to state the irreducibility of the bounding matrix (see property 5).

204 J.M. FOURNEAU, M. LECOZ, F. QUESSETTE

Type Rate | Transition Condition

arrival L AL T+ + T<B

arrival H without pushout | Ax T++, H++ T<B

arrival H with pushout Al H++ T=Band H< B

service L I T — —, Togle(RR) | T >0 and (RR=1) and (T > H))

or ((RR = h) and(H = 0)))

service H 7 T—— H——, T >0 and (((RR =h) and (H > 0))
Toggle(RR) or ((RR=1) and(T = H)))

list processing 7 Toggle(RR) T=0

Table I. List of transitions

4.2. Applying Algorithm LIMSUB

First we have to design a partition of the state space. Remember that, as the states in the
partition are assumed to be consecutive, this partition step may include a renumbering of the
state space. Furthermore, the rewards must be not decreasing. We have considered several
partitions but for the sake of conciness we only present one of them, whose results are quite
good.

Let us consider a sequence of positive integers F;. Let us denote by F the partition we now
design. We define macro-states (T,Y, RR) where Y = maxz(H,T — Fr).

e If Y > T — Fr, then the macro-state contains only one state (T, H, RR) and Y is exactly
the number of high priority packets in the buffer.

e If Y =T — Fr, then the state (T,Y, RR) is a macro-state which contains all the states
(T, X, RR) such that X <T — Fr.

Note that the states of the initial chain where packets are lost (i.e. (B, B,h) and (B, B,1))
are not aggregated into macro-states as Fg > 0.

The states are ordered according to the lexicographic ordering on the states (T,Y, RR).
Again, this ordering has very important properties one must check. First, we want to compute
the probability that an incoming high priority packet is rejected. Due to PASTA, this
probability is also the probability that the buffer is full of high priority packets (i.e. T = B
and H = B). Thus, the reward is equal to zero except for states (B, B, h) and (B, B,l) where
its value is 1. As these states are the last states in the lexicographic ordering, the reward is
clearly a non decreasing function.

Property 5. The chain, the ordering and partition F satisfy the assumptions of theorem 3.

Proof: Indeed, the chain is clearly irreducible (see the list of transitions in the former table).
Due to the uniformisation procedure, we clearly have P(1,1) > 0. The first states are (0,0, h)
and (0,0,1). Due to the “list processing” transition, we have transitions between theses two
states. Thus we have P(2,1) > 0. Furthermore if T is positive, there exists always a transition
from an arbitrary state i with T' packets to a state j with 7' — 1 packets. According to the
partition definition and ordering, the index of macro-state which contains i is strictly larger
than the index of macro-state which contains j. Thus the matrix satisfies the assumptions of
theorem 3.

ALGORITHMS FOR AN IRREDUCIBLE AND LUMPABLE STRONG STOCHASTIC BOUND 205

Let us now present some typical computation times and sizes of models. We show in the
next two tables the computation times for the various tasks we have to do. All the programs
were written in C, compiled with gcc at the maximal optimization level and executed on an
usual PC with a 1.7GhZ processor.

B Size NZT | Generate | Bound Size | Bound NZT | Reorder and Store
500 251502 | 1005003 3.3s 11872 79550 5.8s
1000 | 1003002 | 4009995 13.s 23850 148371 23.2s

Table II. Sizes of for exemples

In both tables, B is the buffer size. Then we report the size of the original matrix: number
of states and number of non zero transitions (NZT) and the time to build this matrix and
store it on disk. Then, we give the size of the bounding matrix (the F; are all equal to 10 in
these experiments) and the number of non zero transitions. To compute the bound, we need
some pre-processing steps: first reorder the states according to the partition, then store the
matrix in a suitable form. The last column reports the time for preprocessing the matrix (i.e.
reordering and storing) required to apply LIMSUB.

We also report in table III the computation times for the algorithms we have presented
before. LIMSUB is the basic algorithm while LIMSUB 2 is a more efficient implementation
which avoids the computation of some null entries of the matrices. Finally, for the sake of
comparison, we also give the computation times for IMSUB algorithm and for numerical
solution. This last step is performed by a standard Gauss-Seidel algorithm. Clearly, the actual
implementation of LIMSUB has to be optimized and LIMSUB 2 is much more efficient.

B LIMSUB | LIMSUB 2 | IMSUB || Resolution
500 44.3s 21.8s 10.1s 36.3s
1000 272s 86.7s 38.2s 73.6s

Table III. Sizes of for exemples

Numerical results can be found in [2, 8, 9] where comparisons with exact results are obtained
when the chain is small. It can be observed that the bounds are good when the steady-state
distributions are skewed with large probabilities for states with small values for T'. We have also
observed [8] that this state representation and this ordering imply that matrix P is almost
“st”-monotone. Thus, we only need a small number of perturbations to obtain a lumpable
bound.

5. Conclusions

We design a new algorithm to obtain a matrix simpler to solve than the stochastic matrix of
a Markov chain. Clearly the performance of LIMSUB are dependent of the ordering of the
macro-states. It is clearly understood for the accuracy but it is also true for the number of
operations for the computation of R. Hopefully the number of operations is easily numerically
computed before we really build the bound. Thus one can now study good heuristics for the

206 J.M. FOURNEAU, M. LECOZ, F. QUESSETTE

ordering. The availability of this algorithm (the program will be on the web soon) will help to
study the design of heuristics for accurate bounds.

10.

11.

12.

13.
14.

15.
16.

17.

18

REFERENCES

. O. Abu-Amsha, J.-M. Vincent, “An algorithm to bound functionals of Markov chains with large state
space”, 4th INFORMS Conference on Telecommunications, Boca Raton, Florida, 1998.

. M. Benmammoun, J.M. Fourneau, N. Pekergin, A. Troubnikoff, “An algorithmic and numerical approach
to bound the performance of high speed networks”, IEEE MASCOTS 2002, Fort Worth, USA, pp. 375-382.

. P. Buchholz, “Exact and Ordinary Lumpability in Finite Markov Chains”, J. Appl. Prob., V31, pp 59-75,
1994.

. P. Buchholz, “An iterative bounding method for Stochastic Automata Networks”, Performance Evaluation,
V49, 2002, pp. 211-226.

. P.J. Courtois and P. Semal, “Computable bounds for conditional steady-state probabilities in large Markov
chains and queueing models” IEEE JSAC, 4(6), 1986.

. T. Dayar, W. J. Stewart, “Comparison of partitioning techniques for two-level iterative solvers on large
sparse Markov chains”, SIAM Journal on Scientific Computing 21 (2000), pp. 1691-1705.

. S. Donatelli, “Superposed generalized stochastic Petri nets: definition and efficient solution”, Proc. 15th
Int. Conf. on Application and Theory of Petri Nets, Zaragoza, Spain, June 1994.

. J.M. Fourneau, N. Pekergin, “An algorithmic approach to stochastic bounds”, LNCS 2459, Performance
evaluation of complex systems: Techniques and Tools, pp 64-88, 2002.

. J.M. Fourneau, M. Le Coz, N. Pekergin, F. Quessette, “An open tool to compute stochastic bounds on

steady-state distributions and rewards”, IEEE Mascots 03, USA, 2003.

G. Hébuterne and A. Gravey, “A space priority queueing mechanism for multiplexing ATM channels”,

ITC Specialist Seminar, Computer Network and ISDN Systems, Vol. 20 (Dec. 90), 37—43.

J. Keilson, A. Kester, “Monotone matrices and monotone Markov processes”, Stochastic Processes and

Their Applications 5 (1977), pp. 231-241.

B. Plateau, “On the stochastic structure of parallelism and synchronization models for distributed

algorithms”, Proc. of the SIGMETRICS Conference, Texas, 1985, pp. 147-154.

W.J. Stewart, “Introduction to the Numerical Solution of Markov Chains”, Princeton Univ. Press, 1994.

W.J. Stewart, K. Atif, B. Plateau, “The numerical solution of stochastic automata networks”, European

Journal of Operational Research 86 (1995) pp. 503-525.

D. Stoyan, “Comparison Methods for Queues and Other Stochastic Models”, Wiley, 1983.

L. Truffet, “Reduction Technique For Discrete Time Markov Chains on Totally Ordered State Space Using

Stochastic Comparisons”, Journal of Applied Probability, V37, N3, 2000.

E. Uysal, T. Dayar, “Iterative methods based on splittings for stochastic automata networks”, European

Journal of Operational Research, V110 (1998), pp. 166-186.

. N. Van Dijk, “Error bound analysis for queueing networks”, Performance 96 Tutorials, Lausanne, 1996.

