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Abstract

Traditional product form property of Markovian queueing networks usually is vanished when capacity of
queues are finite and clients are blocked or rejected. A new efficient simulation method, derived from Propp &
Wilson (Propp 1996) perfect simulation, is applied to the finite capacity queues context. We present an algorithm
that samples directly states of the network according to stationary distribution. This method has been applied to
queueing networks with various monotonous routing policies.

It is shown that, according to an adequate uniformization techniques usual Markovian queuing networks are
monotonous. Such monotonous networks include networks with overflow or blocking, join the shortest queue
routing policy, fork of customers... Consequently, perfect simulation could be improved by drawing trajecto-
ries from minimum and maximum states which reduces computation time. Moreover, for the estimation of a
monotonous reward function, the simulation time could be reduced drastically as in (Vincent & Marchand 2004).

Some examples are given : loss estimation on Erlang models, usage of the last queue in a line of queues with
blocking, saturation estimation for a multi-stage interconnection switch...

1 Introduction

Queuing systems are of fundamental interest for modeling communication networks, production lines, operating
systems,.... Servers represent the access of customers to resources and queue capacity allows modeling of resource
contention and storage before service. Two kinds of dimensioning are needed for systems optimization. Time
dimensioning have to fix servers speed and space dimensioning define memory capabilities of nodes. In all cases,
the estimation of service quality are useful before the system deployment.

Under Markovian assumptions (Poisson arrivals, exponential service time, probabilistic routing etc.), it has
been shown that the network of queues is modelled by a multidimensional Markov jump process. Then the system
performances are computed from the steady-state distribution of the process. Fortunately, when queues have an
infinite capacity the steady-state distribution is product-form and could easily be computed in a reasonable time
(Bolch, Greiner, de Meer & Trivedi 1998). In some cases the hypothesis of infinite capacity could be released,
preserving the product form (Perros 1994, Balsamo, De Nitto Person & Onvural 2001). Unfortunately, in most
cases, the steady state distribution is not in a product form and adequate approximation techniques should be
applied. Many works cover the domain of queuing networks with finite capacity, bibliographies of (Onvural
1990, Balsamo, De Nitto Person & Inverardi 2003) provide pointers to related works.

Simulation approaches are alternative methods to estimate quality of service of such networks. Based on
discrete event simulation (Banks, Carson, Nelson & Nicol 2001) or on Markov properties (MCMC methods)
(Brémaud 1999), simulations estimate the steady-state distribution on long run trajectories. Drawbacks of simula-
tions are the control of the warm up period or burn-in time (Robinson 2002) and the influence of the initial state
on stochastic behavior. Moreover, because statistics are made on long run trajectories, assumptions on asymptotic
independence are difficult to justify.

In this paper a specific simulation technique, “perfect simulation”, is used to sample the steady state distribu-
tion. Based on Propp & Wilson ideas (Propp 1996), an algorithm is proposed. By proving the monotonicity of
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queuing networks with blocking and rejection, we improve drastically simulation time. This technique have been
applied on classical models to validate statistically the approach and on huge models to demonstrate the efficiency
of the method.

The second section of this article establish the construction of a Markovian queuing network as a composi-
tion of independent monotone events. Section 3 is devoted to the description of perfect sampling technique and
improvements obtained by monotonicity properties. Section 4 presents typical examples of non-product form
Markovian queuing networks and gives some experimental results.

2 Multi-dimensional Markov jump process

2.1 Events in queuing networks

Consider a queueing network withK queues. The state space of each queueQi is the set of integersXi =
{0, · · · , Ci}, whereCi is the capacity of queueQi. The state spaceX of the system is the Cartesian product of all
Xi;

X = X1 × · · · × XK .

The natural order on integer is extended to a partial order onX using component-wise ordering.

Definition 1 (Event)
An evente is an application defined onX , that associates to each statex ∈ X a new state denoted byΦ(x, e). Φ
is called thetransition function of the system.

One should note that the transition function is defined onE × X . It is convenient to include inside the transition
function the fact that some events could not be applied to a state. For example, the eventend of servicecould
be executed only if the number of customers in the queue is greater than one. As an example, we consider that
applying anend of serviceevent to an empty queue remains the global state unchanged (skip operation).

In a queueing network, a customer arrival, the end of a service and the following routing, a customer departure,
are typical events in networks. The transition corresponding to an arrival in queueQi is an increment ofxi provided
thatxi < Ci. In that case one should precise the routing policy (rejection, overflow on another queue,...).

Denote byE = {e1, · · · , ep} the set of events. Usually, this set is supposed to be finite.

Definition 2 (Execution)
An executionof the system is defined by an initial statex0 ∈ X and a sequence of eventse = {en}n∈N. The
sequence of states{xn}n∈N defined by the recurrencexn+1 = Φ(xn, en+1) for n > 0 is called atrajectory .

Coupling has been used in many ways in Markov chain analysis (Brémaud 1999) or (Lindvall 1997). In this paper,
coupling is related to trajectories having the same sequence of generating events. This is a stronger definition than
(Lindvall 1997) when probability measures are given on the initial value and the sequence of events.

Definition 3 (Coupling)
A sequence of eventse = {en}n∈N is said to be globally coupling if there exist someN such that the state at
timeN (and so after) does not depend on the initial state. The minimum value ofN is called the global forward
coupling time and is notedτ .

Definition 4 (Monotonous events)
An evente ∈ E is said to bemonotonousif it preserves the partial ordering onX . That is

∀(x, y) ∈ X x 6 y ⇒ Φ(x, e) 6 Φ(y, e).

If all events are monotonous, the global system is said to be monotonous.

The monotonicity property is of fundamental for improvement of simulation. Denote byM , (respectivelym), the
set of all maximal, (respectively minimal), elements of the finite partially ordered state spaceX . Then

Proposition 1
For a given infinite sequence of eventse = {en}n∈N. If all trajectories issued from any initial state inM ∪ m
couple then global coupling occurs.

In the case when the state space is the Cartesian product of{0, · · · , Ci} there is a unique minimum state(0, · · · , 0)
and a unique maximum state(C1, · · · , CK). So that it is sufficient to build 2 trajectories to capture the behavior
of the system and compute coupling time.
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2.2 Uniformization

Now, to achieve the model construction of the Markov process, a Poisson process with intensityλj is associated
to each eventej . These Poisson processes are supposed to be independent.

Theorem 1 (Uniformized process)
The uniformized process driven by the Poisson process with rateΛ =

∑p
j=1 λi and generating at each time of

the process an evente ∈ E according to the probability distribution(λ1
Λ , · · · , λp

Λ ) is equivalent to the queueing
network Markov process.

The proof of this result is obtained by writing down the infinitesimal transition equations. One should notice that
the idea is to introduce the independence between events, when an event could not be applied to one statex the
state is not changed (skip operation), the method is analogous with the rejection method in stochastic simulation.
The forward simulation algorithm is then derived :

Algorithm 1 Forward simulation of a Markov chain
x ← x0; {choice of the initial value of the process}
repeat

e ← Generate-event(){generation of evente according to the distribution(λ1
Λ , · · · , λp

Λ )}
x ← Φ(x, e); {computation of the next statexn+1 with evente}

until stopping criteria
returnx

Moreover, because generated events are independent a simple global coupling condition could be established.

Proposition 2
Suppose there exist some finite sequence (pattern) of event{e1, · · · , ek} such that the image ofX byΦ(Φ(· · · ,Φ(X , ek), ek−1), · · · , e1)
is reduced to one point, then the random sequence generated by the algorithm is globally coupling almost surely.

The proof is obvious because of independence of events. The probability that the pattern never occurs is0. So
after a sufficiently large number of iterations, the state of the chain does not depend on the initial state.

Proposition 3 (Uniformized monotonous system)
Provided that the system is monotonous, the discrete time Markov chain embedded in the uniformized process is
also monotonous.

Consequently, global coupling could be obtained by conditions like : there exist a sequence of events that flush the
system, it will be the case for all examples presented in the last section. The representation of the chain and the
coupling condition is given by the model construction.

2.3 Two queues example

For example consider the following system described in figure 1.

λ
µ

ν

C1

C2 Rejection

Blocking

p

1−p

Figure 1: Queues with2 types of contention

There are4 events:

e1 customer external arrival with rateλ1 = λ.

e2 end of service of the customer on the first queue and routing outside the network with rateλ2 = pµ.
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e3 end of service on the first queue and routing to the second queue, if the second queue is full the customer is
lost. The rate associated toe3 is λ3 = (1− p)µ.

e4 end of service on the second queue, if the first queue is full the customer is blocked in the second queue and
start again a service. The rate associated toe4 is λ4 = ν.

End of service events,e2, e3 ande4 make a transition if the corresponding queue is not empty. When the queue is
empty the event is just a skip operation.

The uniformized process has a rateΛ = λ + µ + ν and the sequence ofC1 eventse2 followed by a sequence
of C2 eventse4 ande2 flush the system. The system is globally coupling almost surely.

3 Monotone events in queuing networks

The difficulty for detecting monotonicity property in queueing networks is to define simultaneously a state-space
structure and events on the structure. Some ideas developped in this section could be find in (Vincent 2005).

3.1 Finite capacity single server queue

If we consider a single server queue defined by an input Poisson process (rateλ) and exponential service time (rate
µ). Denote byC the queue capacity The state space associated to the queue isX ) = {0, · · · , C}. Two types of

Overflow

λ

Capacity C µ

Figure 2: Single server queueM/M/1/C

events occur in the system :

Type Rate Action onx ∈ X
arrival λ x 7−→ min{x + 1, C}
departure µ x 7−→ max{x− 1, 0}

It is clear that arrival and departure are monotone events as composition ofmax, min, + functions.

3.2 Erlang model

ConsiderK servers with ratesµ1, · · · , µK . In such model, because servers are not identical, one should precise a
priority order when the system is partially empty. It is supposed that the customer enters the first non-empty server
in the classical different a single server queue defined by an input Poisson process (rateλ) and exponential service
time (rateµ). Denote byC the queue capacity The state space associated to the queue isX ) = {0, 1}K . (K + 1)

Overflow

µ1

µ2

µΚ

λ

Capacity C

Figure 3: Single server queueM/M/1/C

events are defined as follows :
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Type Rate Action onx = (x1, · · · , xK) ∈ X
arrival λ xi 7−→ xj + x1 . . . xj−1(1− xj)
departure on serveri µi xi 7−→ max{xi − 1, 0}

It is clear that departures are monotone events. For the arrival case, one should note that

x1 . . . xj−1(1− xj) =
{

1 if j is the first non-empty server,
0 in other cases.

With this algebraic expression, each product added to the state vector is monotonous, so is the event.

3.3 Finite capacity multiple server queue

For theM/M/K/C queue, events are just a combination of the two previous cases. The state space is{0, 1} ×
· · · × {0, 1} × {0, · · · , C −K}. TheK first coordinates indicate if the server is occupied and the last coordinate
corresponds to customers in the waiting room.

λ

Capacity of waiting room C−K

µ1

µ2

µΚ

Overflow

Figure 4: Multiple server queueM/M/K/C

For arrivals, the case is the same as in the Erlang model. For a departure on serveri, we have to check if there
are available customers in the waiting room. But the event is still monotonous.

3.4 Routing : rejecting or blocking

Consider now a typical routing evente, occurring in a queueing network. This event is defined by the origin queue
Qi and a list of destinationsQj1 , Qj2 , · · · , Qji

with the following semantic :
- if Qi is empty do nothing;
- if Qi is not empty find the first non empty queueQjk

in the list, decrements the number of customers inQi and
increments the number of customers inQjk

- if all queues are full then reject the customer out of the network.

Proposition 4 (Monotonicity of routing and rejection)
A routing event with rejection if all destination queues are full is a monotone event.

The proof is done by exploring all possibilities. Let(x, y) ∈ X 2, such thatx 6 y. Let e be a routing event defined
by its originQi and its list of destinationsQj1 , Qj2 , · · · , Qji

.
- if yi = 0 thenxi = 0 and the event does not modify statex andy; Φ(x, e) = x 6 Φ(y, e) = y;
- if yi > 0 andxi > 0, thenΦ(y, e)|i = yi − 1 > xi − 1 = Φ(x, e)|i. Let Qjk

the first non saturated queue
in statey. Becausex 6 y the first non saturated queue for statex is either strictly beforeQjk

in the list and the
corresponding queue is saturated in statey or Qjk

is the first non saturated queue in statex andy. In both cases,
the order is preserved.

The case of blocking queues is very similar to the previous case. The routing event is defined by the origin
queueQi and a list of destinationsQj1 , Qj2 , · · · , Qji with the following semantic :
- if Qi is empty do nothing;
- if Qi is not empty find the first non empty queueQjk

in the list, decrements the number of customers inQi and
increments the number of customers inQjk

- if all queues are full then block the customer inQi.

Proposition 5 (Monotonicity of routing and blocking)
A routing event with blocking in the original queue if all destination queues are full is a monotone event.

The proof is similar to the proof of the previous proposition and was established by (Mattson 2002).
Clearly arrivals from outside or routing directly outside (end of service) are also monotone events.
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3.5 State dependent routing

In queuing networks routing could depend on queue state. That is the case for the “Join the shortest queue policy”.
We suppose that a priority is given for the queues, such that when shortest queues have the same number of
customers the queue with higher priority is chosen.

Overflow

λ

Capacity C2

µ2

Capacity C1

µ1

Capacity CK

µΚ

Join the 
shortest 
available
queue

Figure 5: Join the shortest queue withK destination queues

The state space of the system is clearly{0, · · · , C1} × · · · , {0, · · · , CK}. Departure events are equivalent to
departures in aM/M/1 queue and so are monotonous. For arrivals, consider statesx andy such thatx 6 y. Let i
be the the index of the shortest queue forx andj for statey. If i = j thenΦ(x, e)|i = xi+1 6 yi−1 = Φ(y, e)|i. If
i 6= j thenxi 6 xj 6 yj < yi and soΦ(x, e)|i = xi+1 6 yi = Φ(y, e)|i andΦ(x, e)|j = xj 6 yi+1 = Φ(y, e)|i.
When queues are full, the proof is similar.

3.6 Monotone networks

It could be shown also that monotonous events appear in many situations. For example, fork events are monotonous
but, join events are not. Negative customers (Chao, Miyazawa & Pinedo 1999), a generalization of join operation
is monotonous only the case when external arrival of negative customers delete some customers.

For priority queues, one should note that the preemptive policy ensure the monotonicity.

Theorem 2 (Monotonous Markovian networks)
A Markovian network of multi-servers queues and finite capacity with rejection routing or blocking, state dependant
monotonous routing is monotonous.

This result is clear according to the previous propositions. This result is an extension of a work from Mattson
(2002) on blocking.

4 Perfect sampling method

In this section, the perfect sampling method is detailed for the general case then improved for monotonous systems
and finally applied to queuing networks.

4.1 Global state iteration

Formally, when all the knowledge of the dynamics is included in the state description, the system is described by
the transition functionΦ, typically

Xn+1 = Φ(Xn, Un+1); (1)

whereXn is nth observed state of the system, and{Un}n∈Z the sequence of inputs of the system, typically a
sequence of calls to aRandom function. This type of stochastic recursive sequence has been widely studied in a
general framework (Borovkov & Foss 1994) or (Diaconis & Freedman 1999) and some results related with perfect
simulation may be found in (Stenflo 1998, Stenflo 2001).

It is clear that, if the{Un} are independent and identically distributed, the process{Xn}n∈Z defined by an
initial valueX0 and the recursive equations (1) is a Markov chain. Conversely, given a transition matrixP , it is
possible to find a transition functionΦ such that a Markov chain defined by (1) has transition matrixP (Vincent &
Marchand 2004).
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Algorithm 2 Backward-coupling simulation (general version)
for all x ∈ X do

y(x) ← x {choice of the initial value of the vectory, n = 0}
end for
repeat

u ← Random;{generation ofu−n}
for all x ∈ X do

y(x) ← y(Φ(x, u)); {computation of the state at time0 of the trajectory issued fromx at time−n}
end for

until All y(x) are equal
returny(x)

Based on a stochastic recurrent sequence formulation, the following algorithm provides directly a sample of
the steady state distribution.

Provided that the coupling time is almost surely finite, it is shown (Propp 1996, Vincent & Marchand 2004)
that the algorithm 2 generates a state distributed to steady state distribution.

4.2 Monotone perfect sampling

When the operatorΦ is monotonous, as shown in section 2, the algorithm could be simplified by making iteration
only on maximum and minimum values of the state space. In the open queuing networks situation, there is a unique
minimum (all queues are empty) and a unique maximum (all queues are full). Then we only iterate simultaneously
2 trajectories and the time reduction is in the order of the size of the state space. Moreover, it has been shown
(Propp 1996) that the mean coupling time is optimal when steps in the past are multiplied by2 when trajectories
issued from maximum and minimum states have not coupled at time0. In the algorithmM (resp.m) denotes the
set of maximal (resp. minimal) elements in the state space.

Algorithm 3 Backward-coupling simulation (monotonous version)
n=1;
E[1]=Generate-event()
repeat

n=2n;
for all x ∈M ∪m do

y(x) ← x {choice of the initial value of the vectory, n = 0}
end for
for i=n downto n/2+1do

E[i]=Generate-event(){generate event−i according to distribution(λ1
Λ , · · · , λp

Λ )}
for all x ∈M ∪m do

y(x) ← Φ(y(x), E[i]) {apply the transition given by eventE[i] }
end for

end for
for i=n/2 downto 1do
{event−i has already been generated in a previous step}
for all x ∈M ∪m do

y(x) ← Φ(y(x), E[i])
end for

end for
until All y(x) are equal
returny(x)

An illustration of the algorithm is given in figure 6.
This algorithm have the same convergence properties as algorithm 2. The doubling period each scheme ensures

that the coupling time for monotonous system is less than the coupling time for algorithm 2 multiplied by a factor
of 2 which is small enough to improve the simulation time.
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Figure 6: Convergence of monotone backward process

4.3 Functional coupling

In fact, in many case steady state is needed to compute rewards. When rewards are monotonous, the algorithm is
improved by initiating the initial values of the process by reward values on maximum and minimum sets.

Algorithm 4 Backward-coupling simulation (monotonous reward version)
n=1;
E[1]=Generate-event()
repeat

n=2n;
for all x ∈M ∪m do

y(x) ← x {choice of the initial value of the vectory, n = 0}
R(x) = Reward(x) {initial value of the rewards}

end for
for i=n downto n/2+1do

E[i]=Generate-event(){generate event−i according to distribution(λ1
Λ , · · · , λp

Λ )}
for all x ∈M ∪m do

y(x) ← Φ(y(x), E[i]) {apply the transition given by event−i e }
R(x) = Reward(y(x)) {actualization of rewards}

end for
end for
for i=n/2 downto 1do

for all x ∈M ∪m do
y(x) ← Φ(y(x), E[i]) {apply the transition given by event−i }
R(x) = Reward(y(x)) {actualization of rewards}

end for
end for

until All Reward(x) are equal
returnReward(x)

An illustration of the algorithm is given in figure 7. The simulation time is reduce fromn = 32 to 8 iterations
to get a sample of the steady state reward.

5 Examples

All simulations have been done on a 1Ghz Pentium 4 with 512Mo RAM, which is sufficient for our purpose.

5.1 Two queues

Consider the system in figure 1 with capacity300, ratesλ = 1.2, µ = 2, ν = 0.8 andp = 0.6 the routing prob-
ability. The estimation of saturation of queue 2 that generates losses is done on sample with size106. Saturation
probability is estimated to2.27 10−3 ± 0.08 10−3 with a 95% confidence interval.

The size of state space of this network is90601. The mean number of iterations before coupling is about107

simple transitions. The computation time of the generation of one state distributed according steady state is2ms.
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Figure 7: Convergence of monotone backward process

5.2 Priority servers

The basic model in performance evaluation of network is the Erlang model. It consists in parallel servers, arriving
customers are served by the first non empty server. If all servers are busy the customer is rejected. If all servers

Arrivals

externes
Servers

Overflow 

on next free server

Rejection if all servers 

are buzy

Output

Figure 8: Erlang queueing system (overflow)

have the same service rate, it is well known that the system is reversible and the stationary distribution could be
analytically computed. This property has been used to test the simulation software. By goodness fitting tests, it
has been shown that the simulated sample is accepted byχ2 tests as representative of the theoretical distribution.

Moreover, with non homogeneous servers, the system could be simulated easily. An experiment has been done
with 30 servers,λ = 20 andµi = 1 for i ∈ {1, · · · , 10}, µi = 0.8 for i ∈ {11, · · · , 20} andµi = 0.5 for
i ∈ {20, · · · , 30}. Saturation probability is estimated to0.0579± 4.710−4, loss rate is estimated to1.1 customers
per second (the system is loaded).

In that case, the size of the system is230 ' 109 states, the computation time of the generation of one state
distributed according to steady state is less than0.4ms and the mean number of iterations is577 per generated
state.

To study more precisely the coupling time, the mean number of iterations is computed for30 homogeneous
servers with rate1 and values ofλ from 1 to 50. Sample size was10000 which gives roughly a few percent
precision.

"Mean iterations number"

 50

 100

 150

 200

 0  10  20  30  40  λ
 0

Figure 9: Erlang model : influence of input rate on coupling time

One should note that the curve is maximum when the rate is about15 that corresponds to the maximum spread
of the stationary distribution. We notice that the curve is not symmetric and heavy loaded systems converge more
rapidly to the steady state.
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5.3 Blocking line

To observe effect of blocking a line of queues is considered. Queue capacities have been fixed to100, arrival rate

C1 µ1 µ2
λ

reject

C2 C3 µ3

C4 µ4 C5 µ5

Figure 10: Line of queues with blocking

is 1.2 and service rates0.8. Blocking probabilities for each queue have been estimated :b1 = 0.34, b2 = 0.02
b3 = 0.02, b4,= 0.02. In that case, the size of the system is1006 = 1012 states, the computation time of the
generation of one state distributed according to steady state is less than1ms.

5.4 Delta networks

To deal with larger networks, a delta network with 4 stages have been implemented. All queues have a capacity of
100 customers. With a load of0.9 on each input queue and a uniform routing at each stage (probability1/2), the
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Figure 11: A regular network

mean number of iterations to get a state is400000, the corresponding computation time is135ms per generated
state. It is important to notice that the state space is huge10128 and the presented method remains efficient.

5.5 Call centers

A typical application of this approach concerns modeling of call centers. Gans, Koole & Mandelbaum (2003)
provide a huge bibliography on this topic. We focus our example on a simple model with3 types of servers (figure
12). The call center receive two types of requests. For the first type of requests, rateλ1, servers of type I or type
III could answer the request but requests are initially routed to type I servers. For the second type of requests, rate
λ2 servers of type II and III could answer in this order. The problem is to estimate the mean number of occupied
servers of each type and estimate the probability for a call to be rejected.

Traffic 2

Overflow traffic 2Overflow traffic 1

Type I servers Type II servers

Type III servers

Traffic 1

Figure 12: A typical call center with overflow

The configuration consist ink1 = 16 µ1 = 1 servers of type I,k2 = 16 of type II µ2 = 1.5 andk3 = 8 of type
III µ3 = 2. The size of the state space is240. The input rateλ1 vary from0 to 60, the input rateλ2 is fixed to20.
The second set of servers is lightly loaded.

A typical result is given in figure 13:
The computation time for one iteration is about450ms.
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Figure 13: Influence of the input rateλ1 on mean number of type III occupied servers

6 Future works

In this article have been established monotonicity properties of Markovian queueing networks with finite capacity
queues. These properties are fundamental to improve stochastic simulation of such networks. It appears that
the simulation time is short enough to estimate probability of rare events with a sufficient confidence interval.
Moreover, perfect simulation of performances rewards could also be done by the method developed by (Vincent &
Marchand 2004).

A free software is under development. Current version is athttp://www-id.imag.fr/Software/PSI2. Based on an
event description of the queueing network, it offers a simulation kernel based on ”perfect simulation” algorithms.
Acknowledgement: Author would like to thank Bernard Tanzi for his very efficient development of PSI2 code.
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