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Abstract

Traditional product form property of Markovian queueing networks usually is vanished when capacity of
queues are finite and clients are blocked or rejected. A new efficient simulation method, derived from Propp &
Wilson (Propp 1996) perfect simulation, is applied to the finite capacity queues context. We present an algorithm
that samples directly states of the network according to stationary distribution. This method has been applied to
queueing networks with various monotonous routing policies.

It is shown that, according to an adequate uniformization techniques usual Markovian queuing networks are
monotonous. Such monotonous networks include networks with overflow or blocking, join the shortest queue
routing policy, fork of customers... Consequently, perfect simulation could be improved by drawing trajecto-
ries from minimum and maximum states which reduces computation time. Moreover, for the estimation of a
monotonous reward function, the simulation time could be reduced drastically as in (Vincent & Marchand 2004).

Some examples are given : loss estimation on Erlang models, usage of the last queue in a line of queues with
blocking, saturation estimation for a multi-stage interconnection switch...

1 Introduction

Queuing systems are of fundamental interest for modeling communication networks, production lines, operating
systems,.... Servers represent the access of customers to resources and queue capacity allows modeling of resource
contention and storage before service. Two kinds of dimensioning are needed for systems optimization. Time
dimensioning have to fix servers speed and space dimensioning define memory capabilities of nodes. In all cases,
the estimation of service quality are useful before the system deployment.

Under Markovian assumptions (Poisson arrivals, exponential service time, probabilistic routing etc.), it has
been shown that the network of queues is modelled by a multidimensional Markov jump process. Then the system
performances are computed from the steady-state distribution of the process. Fortunately, when queues have an
infinite capacity the steady-state distribution is product-form and could easily be computed in a reasonable time
(Bolch, Greiner, de Meer & Trivedi 1998). In some cases the hypothesis of infinite capacity could be released,
preserving the product form (Perros 1994, Balsamo, De Nitto Person & Onvural 2001). Unfortunately, in most
cases, the steady state distribution is not in a product form and adequate approximation techniques should be
applied. Many works cover the domain of queuing networks with finite capacity, bibliographies of (Onvural
1990, Balsamo, De Nitto Person & Inverardi 2003) provide pointers to related works.

Simulation approaches are alternative methods to estimate quality of service of such networks. Based on
discrete event simulation (Banks, Carson, Nelson & Nicol 2001) or on Markov properties (MCMC methods)
(Brémaud 1999), simulations estimate the steady-state distribution on long run trajectories. Drawbacks of simula-
tions are the control of the warm up period or burn-in time (Robinson 2002) and the influence of the initial state
on stochastic behavior. Moreover, because statistics are made on long run trajectories, assumptions on asymptotic
independence are difficult to justify.

In this paper a specific simulation technique, “perfect simulation”, is used to sample the steady state distribu-
tion. Based on Propp & Wilson ideas (Propp 1996), an algorithm is proposed. By proving the monotonicity of
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gueuing networks with blocking and rejection, we improve drastically simulation time. This technique have been
applied on classical models to validate statistically the approach and on huge models to demonstrate the efficiency
of the method.

The second section of this article establish the construction of a Markovian queuing network as a composi-
tion of independent monotone events. Section 3 is devoted to the description of perfect sampling technique and
improvements obtained by monotonicity properties. Section 4 presents typical examples of non-product form
Markovian queuing networks and gives some experimental results.

2 Multi-dimensional Markov jump process

2.1 Events in queuing networks

Consider a queueing network withi queues. The state space of each qu@ues the set of integerst; =
{0,---,C;}, whereC; is the capacity of queu®@;. The state spac# of the system is the Cartesian product of all
Xis

X=X X - X Xg.
The natural order on integer is extended to a partial ordeY aising component-wise ordering.

Definition 1 (Event)
An evenk is an application defined oA’, that associates to each statec X’ a new state denoted W®(z, e). ®
is called thetransition function of the system.

One should note that the transition function is definedon X. It is convenient to include inside the transition
function the fact that some events could not be applied to a state. For example, thereverfitserviceeould
be executed only if the number of customers in the queue is greater than one. As an example, we consider that
applying anend of servicevent to an empty queue remains the global state unchanged (skip operation).

In a queueing network, a customer arrival, the end of a service and the following routing, a customer departure,
are typical events in networks. The transition corresponding to an arrival in g4és@n increment of; provided
thatz; < C;. In that case one should precise the routing policy (rejection, overflow on another queue,...).

Denote bye = {e!,- -, eP} the set of events. Usually, this set is supposed to be finite.

Definition 2 (Execution)
An executionof the system is defined by an initial statg € X and a sequence of events= {e,},en. The
sequence of stat€s:, },<n defined by the recurrenceg, 1 = ®(z,,e,+1) for n > 0 is called atrajectory .

Coupling has been used in many ways in Markov chain analysenBud 1999) or (Lindvall 1997). In this paper,
coupling is related to trajectories having the same sequence of generating events. This is a stronger definition than
(Lindvall 1997) when probability measures are given on the initial value and the sequence of events.

Definition 3 (Coupling)

A sequence of events= {e, }.en is said to be globally coupling if there exist somesuch that the state at
time N (and so after) does not depend on the initial state. The minimum vali¥ei®talled the global forward
coupling time and is noted.

Definition 4 (Monotonous events)

An event € £ is said to benonotonousif it preserves the partial ordering o/&’. That is
V(z,y) €X z<y = P(z,e) < D(y,e).

If all events are monotonous, the global system is said to be monotonous.

The monotonicity property is of fundamental for improvement of simulation. Denofd pgrespectivelym), the
set of all maximal, (respectively minimal), elements of the finite partially ordered state &pddeen

Proposition 1
For a given infinite sequence of events= {e, },en. If all trajectories issued from any initial state it U m
couple then global coupling occurs.

In the case when the state space is the Cartesian prod{t-of , C;} there is a unique minimum state, - - - ,0)
and a unigue maximum staf€’;, - - - ,Ck ). So that it is sufficient to build 2 trajectories to capture the behavior
of the system and compute coupling time.



2.2 Uniformization

Now, to achieve the model construction of the Markov process, a Poisson process with intensiggsociated
to each event;. These Poisson processes are supposed to be independent.

Theorem 1 (Uniformized process)
The uniformized process driven by the Poisson process withArate Z§:1 ); and generating at each time of

the process an evente £ according to the probability distribution(l%, e ,%) is equivalent to the queueing
network Markov process.

The proof of this result is obtained by writing down the infinitesimal transition equations. One should notice that
the idea is to introduce the independence between events, when an event could not be applied tootigestate
state is not changed (skip operation), the method is analogous with the rejection method in stochastic simulation.
The forward simulation algorithm is then derived :

Algorithm 1 Forward simulation of a Markov chain
x « xo; {choice of the initial value of the procéss
repeat
e — Generate-event()generation of event according to the distributio?t, - - - , ATP)}
x «— ®(z,e); {computation of the next statg, ,; with evente}
until stopping criteria
returnz

Moreover, because generated events are independent a simple global coupling condition could be established.

Proposition 2

Suppose there exist some finite sequence (pattern) offent- | e } such thatthe image of by (®(--- , (X, ex), €x—1), -

is reduced to one point, then the random sequence generated by the algorithm is globally coupling almost surely.

The proof is obvious because of independence of events. The probability that the pattern never dcc8rs is
after a sufficiently large number of iterations, the state of the chain does not depend on the initial state.

Proposition 3 (Uniformized monotonous system)
Provided that the system is monotonous, the discrete time Markov chain embedded in the uniformized process is
also monotonous.

Consequently, global coupling could be obtained by conditions like : there exist a sequence of events that flush the
system, it will be the case for all examples presented in the last section. The representation of the chain and the
coupling condition is given by the model construction.

2.3 Two queues example

For example consider the following system described in figure 1.

c1 m

O
Blocking

\Y c2 Rejection

Figure 1: Queues with types of contention

There aret events:
e1 customer external arrival with ratg = .

eo end of service of the customer on the first queue and routing outside the network with ratgy..
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e3 end of service on the first queue and routing to the second queue, if the second queue is full the customer is
lost. The rate associatedd@is A5 = (1 — p)u.

e4 end of service on the second queue, if the first queue is full the customer is blocked in the second queue and
start again a service. The rate associated e A\, = v.

End of service eventsy, e3 ande, make a transition if the corresponding queue is not empty. When the queue is
empty the event is just a skip operation.

The uniformized process has a rdte= A\ + p + v and the sequence 6f; eventse; followed by a sequence
of C2 eventse, ande, flush the system. The system is globally coupling almost surely.

3 Monotone events in queuing networks

The difficulty for detecting monotonicity property in queueing networks is to define simultaneously a state-space
structure and events on the structure. Some ideas developped in this section could be find in (Vincent 2005).

3.1 Finite capacity single server queue

If we consider a single server queue defined by an input Poisson process @atkexponential service time (rate
u). Denote byC' the queue capacity The state space associated to the qu&leds{0,--- ,C}. Two types of

Capacity C u

O

Figure 2: Single server queud /M /1/C

Overflow

events occur in the system :

Type | Rate | Actiononz € X
arrival A | z+— min{z+1,C}
departure| p |  — max{z — 1,0}

It is clear that arrival and departure are monotone events as composiiioaxpfnin, + functions.

3.2 Erlang model

ConsiderK servers with rateg, - - - , ux. In such model, because servers are not identical, one should precise a
priority order when the system is partially empty. It is supposed that the customer enters the first non-empty server
in the classical different a single server queue defined by an input Poisson processdrateexponential service

time (ratex). Denote byC' the queue capacity The state space associated to the queledg0, 1}5. (K + 1)

Capacity C
A il

s

K

Overflow

Figure 3: Single server queud /M /1/C

events are defined as follows :



Type | Rate| Actiononz = (z1,--- ,2k) € X
arrival A X |—>J}j+.’IJ1...$j,1<1—CCj)
departure on server| u; | x; — max{x; — 1,0}

It is clear that departures are monotone events. For the arrival case, one should note that

, ~y __ | 1 if jisthe first non-empty server,
gl = ag) = { 0 in other cases.

With this algebraic expression, each product added to the state vector is monotonous, so is the event.

3.3 Finite capacity multiple server queue

For theM /M /K/C queue, events are just a combination of the two previous cases. The state Sjpadé is
- x{0,1} x {0,--- ,C — K}. The K first coordinates indicate if the server is occupied and the last coordinate
corresponds to customers in the waiting room.

Capacity of waiting room

CcK
A i
2
Overflow ©_>
‘o

HK

{ o

Figure 4: Multiple server queuk! /M /K /C

For arrivals, the case is the same as in the Erlang model. For a departure on,see/bave to check if there
are available customers in the waiting room. But the event is still monotonous.

3.4 Routing : rejecting or blocking

Consider now a typical routing eveatoccurring in a queueing network. This event is defined by the origin queue
Q; and a list of destinationg;, , Q;,, - - - , @, with the following semantic :

- if Q; is empty do nothing;

- if Q; is not empty find the first non empty que@e, in the list, decrements the number of customergjrand
increments the number of customersijn,

- if all queues are full then reject the customer out of the network.

Proposition 4 (Monotonicity of routing and rejection)
A routing event with rejection if all destination queues are full is a monotone event.

The proof is done by exploring all possibilities. L@t y) € X2, such thatr < y. Lete be a routing event defined
by its origin@; and its list of destination®;,, Q;,,--- , Q;,.
- if y; = 0 thenz; = 0 and the event does not modify statandy; ®(z,e) = « < ®(y,e) = y;
-if y; > 0andz; > 0, then®(y,e)|; =y —1 > =, — 1 = ®(z,¢e)|;. LetQ,, the first non saturated queue
in statey. Becauser < y the first non saturated queue for states either strictly before);, in the list and the
corresponding queue is saturated in siate (), is the first non saturated queue in statandy. In both cases,
the order is preserved.

The case of blocking queues is very similar to the previous case. The routing event is defined by the origin
queue®); and a list of destination§;, , Q;,, - - - , @, with the following semantic :
- if Q; is empty do nothing;
- if Q; is not empty find the first non empty que@e, in the list, decrements the number of customergjrand
increments the number of customersijn,
- if all queues are full then block the customergn.

Proposition 5 (Monotonicity of routing and blocking)
A routing event with blocking in the original queue if all destination queues are full is a monotone event.

The proof is similar to the proof of the previous proposition and was established by (Mattson 2002).
Clearly arrivals from outside or routing directly outside (end of service) are also monotone events.



3.5 State dependent routing

In queuing networks routing could depend on queue state. That is the case for the “Join the shortest queue policy”.
We suppose that a priority is given for the queues, such that when shortest queues have the same number of
customers the queue with higher priority is chosen.

Capaity C1
i

T THO—

Capacity C2

Figure 5: Join the shortest queue withdestination queues

The state space of the system is cledfly--- ,C;} x --- ,{0,--- ,Ck}. Departure events are equivalent to
departures in &//M /1 queue and so are monotonous. For arrivals, consider statedy such that: < y. Let:
be the the index of the shortest queued@ndy; for statey. If i = j then®(z, e)|; = 2;4+1 < yi—1 = ®(y, e)|;. If
i # jthenz; < z; <y; <y, andsod(z,e)|; = x;+1 < y; = B(y, e)|; and®(z, e)|; = z; < yi+1 = D(y, e)l,.
When queues are full, the proof is similar.

3.6 Monotone networks

It could be shown also that monotonous events appear in many situations. For example, fork events are monotonous
but, join events are not. Negative customers (Chao, Miyazawa & Pinedo 1999), a generalization of join operation
is monotonous only the case when external arrival of negative customers delete some customers.

For priority queues, one should note that the preemptive policy ensure the monotonicity.

Theorem 2 (Monotonous Markovian networks)
A Markovian network of multi-servers queues and finite capacity with rejection routing or blocking, state dependant
monotonous routing is monotonous.

This result is clear according to the previous propositions. This result is an extension of a work from Mattson
(2002) on blocking.

4 Perfect sampling method

In this section, the perfect sampling method is detailed for the general case then improved for monotonous systems
and finally applied to queuing networks.

4.1 Global state iteration

Formally, when all the knowledge of the dynamics is included in the state description, the system is described by
the transition functior®, typically

Xnp1 = (I)(Xnv Un-‘rl); (l)

where X,, is n'" observed state of the system, afld, }, ., the sequence of inputs of the system, typically a
sequence of calls toRandomfunction. This type of stochastic recursive sequence has been widely studied in a
general framework (Borovkov & Foss 1994) or (Diaconis & Freedman 1999) and some results related with perfect
simulation may be found in (Stenflo 1998, Stenflo 2001).

It is clear that, if the{U,,} are independent and identically distributed, the prodess}, ., defined by an
initial value X, and the recursive equations (1) is a Markov chain. Conversely, given a transition faitiis
possible to find a transition functioh such that a Markov chain defined by (1) has transition mar{}/incent &
Marchand 2004).



Algorithm 2 Backward-coupling simulation (general version)
forall x € X do
y(z) < z {choice of the initial value of the vectgr n = 0}
end for
repeat
u «— Randomj{generation of:_,,}
forall z € X do
y(x) «— y(®(z,u)); {computation of the state at tinfeof the trajectory issued from at time—n}
end for
until All y(z) are equal
returny(x)

Based on a stochastic recurrent sequence formulation, the following algorithm provides directly a sample of
the steady state distribution.

Provided that the coupling time is almost surely finite, it is shown (Propp 1996, Vincent & Marchand 2004)
that the algorithm 2 generates a state distributed to steady state distribution.

4.2 Monotone perfect sampling

When the operatop is monotonous, as shown in section 2, the algorithm could be simplified by making iteration
only on maximum and minimum values of the state space. In the open queuing networks situation, there is a unique
minimum (all queues are empty) and a uniqgue maximum (all queues are full). Then we only iterate simultaneously
2 trajectories and the time reduction is in the order of the size of the state space. Moreover, it has been shown
(Propp 1996) that the mean coupling time is optimal when steps in the past are multiplledh®n trajectories

issued from maximum and minimum states have not coupled attirrethe algorithmM (resp.m) denotes the

set of maximal (resp. minimal) elements in the state space.

Algorithm 3 Backward-coupling simulation (monotonous version)
n=1;
E[1]=Generate-event()
repeat
n=2n;
forall z € M Umdo
y(x) < x {choice of the initial value of the vectgt n = 0}
end for
for i=n downto n/2+1do
E[i][=Generate-event(jgenerate eventi according to distributiorﬁ%7 e
forall z € M Umdo
y(x) «— O(y(z), Efi]) {apply the transition given by eve#t[i] }
end for
end for
for i=n/2 downto 1do
{event—i has already been generated in a previous}step
forall z € M Umdo
y(z) — (y(x), Eli])
end for
end for
until All y(z) are equal
returny(x)

et
N~—
—

An illustration of the algorithm is given in figure 6.

This algorithm have the same convergence properties as algorithm 2. The doubling period each scheme ensures
that the coupling time for monotonous system is less than the coupling time for algorithm 2 multiplied by a factor
of 2 which is small enough to improve the simulation time.
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Figure 6: Convergence of monotone backward process

4.3 Functional coupling

In fact, in many case steady state is needed to compute rewards. When rewards are monotonous, the algorithm is
improved by initiating the initial values of the process by reward values on maximum and minimum sets.

Algorithm 4 Backward-coupling simulation (monotonous reward version)
n=1,
E[1]=Generate-event()
repeat
n=2n;
forall z € M Um do
y(z) < z {choice of the initial value of the vectgr n = 0}
R(z) = Reward(x) {initial value of the rewards
end for
for i=n downto n/2+1do
E[i][=Generate-event(jgenerate eventi according to distributiorﬁ%, s
forall z € M Umdo
y(z) «— @(y(x), E[i]) {apply the transition given by evenrti e }
R(x) = Reward(y(x)) {actualization of rewards
end for
end for
for i=n/2 downto 1do
forall z € M Umdo
y(z) «— @(y(x), E[i]) {apply the transition given by evenrt }
R(x) = Reward(y(z)) {actualization of rewards
end for
end for
until All Reward(x) are equal
return Reward(x)

>
N—
—

An illustration of the algorithm is given in figure 7. The simulation time is reduce frnom 32 to 8 iterations
to get a sample of the steady state reward.

5 Examples

All simulations have been done on a 1Ghz Pentium 4 with 512Mo RAM, which is sufficient for our purpose.

5.1 Two queues

Consider the system in figure 1 with capadp, ratesh = 1.2, u = 2, v = 0.8 andp = 0.6 the routing prob-
ability. The estimation of saturation of queue 2 that generates losses is done on sample viith. sBaturation
probability is estimated t8.27 102 4 0.08 10—3 with a 95% confidence interval.

The size of state space of this networig01. The mean number of iterations before coupling is atiodt
simple transitions. The computation time of the generation of one state distributed according steadgsstate is



Figure 7: Convergence of monotone backward process

5.2 Priority servers

The basic model in performance evaluation of network is the Erlang model. It consists in parallel servers, arriving
customers are served by the first non empty server. If all servers are busy the customer is rejected. If all servers

Arrivals
externes

Servers

Q __ -~ Output

Overflow -
on next free server
<

Rejection if all servers
are buzy

Figure 8: Erlang queueing system (overflow)

have the same service rate, it is well known that the system is reversible and the stationary distribution could be
analytically computed. This property has been used to test the simulation software. By goodness fitting tests, it
has been shown that the simulated sample is acceptgd tests as representative of the theoretical distribution.
Moreover, with non homogeneous servers, the system could be simulated easily. An experiment has been done
with 30 servers A = 20 andy, = 1fori € {1,---,10}, y; = 0.8 for ¢ € {11,---,20} andy; = 0.5 for
i € {20,---,30}. Saturation probability is estimated @579 4 4.710~4, loss rate is estimated ol customers
per second (the system is loaded).
In that case, the size of the systen2? ~ 10° states, the computation time of the generation of one state
distributed according to steady state is less thams and the mean number of iterations5is7 per generated
state.
To study more precisely the coupling time, the mean number of iterations is comput&@ Homogeneous
servers with rated and values of\ from 1 to 50. Sample size wa$0000 which gives roughly a few percent
precision.

Figure 9: Erlang model : influence of input rate on coupling time
One should note that the curve is maximum when the rate is dbdbat corresponds to the maximum spread

of the stationary distribution. We notice that the curve is not symmetric and heavy loaded systems converge more
rapidly to the steady state.



5.3 Blocking line
To observe effect of blocking a line of queues is considered. Queue capacities have beenifike@ndival rate
A=

Figure 10: Line of queues with blocking

is 1.2 and service rate8.8. Blocking probabilities for each queue have been estimatgd== 0.34, b, = 0.02
bz = 0.02, by,= 0.02. In that case, the size of the systemli®)® = 10'? states, the computation time of the
generation of one state distributed according to steady state is lesktisan

5.4 Delta networks

To deal with larger networks, a delta network with 4 stages have been implemented. All queues have a capacity of
100 customers. With a load d@f.9 on each input queue and a uniform routing at each stage (probabifijythe

Figure 11: A regular network

mean number of iterations to get a statd(8000, the corresponding computation timeli3sms per generated
state. It is important to notice that the state space is h0&& and the presented method remains efficient.

5.5 Call centers

A typical application of this approach concerns modeling of call centers. Gans, Koole & Mandelbaum (2003)
provide a huge bibliography on this topic. We focus our example on a simple modd tyjles of servers (figure

12). The call center receive two types of requests. For the first type of requests, ragvers of type | or type

Il could answer the request but requests are initially routed to type | servers. For the second type of requests, rate
Ao servers of type Il and Il could answer in this order. The problem is to estimate the mean number of occupied
servers of each type and estimate the probability for a call to be rejected.

Figure 12: A typical call center with overflow

The configuration consist ik, = 16 1 = 1 servers of type Ik, = 16 of type Il us = 1.5 andks = 8 of type
Il uz = 2. The size of the state space2i¥. The input rate\; vary from0 to 60, the input rate\, is fixed t020.
The second set of servers is lightly loaded.

A typical result is given in figure 13:

The computation time for one iteration is abdidms.
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Figure 13: Influence of the input rate on mean number of type Ill occupied servers

6 Future works

In this article have been established monotonicity properties of Markovian queueing networks with finite capacity
gueues. These properties are fundamental to improve stochastic simulation of such networks. It appears that
the simulation time is short enough to estimate probability of rare events with a sufficient confidence interval.
Moreover, perfect simulation of performances rewards could also be done by the method developed by (Vincent &
Marchand 2004).

A free software is under development. Current version ketat//www-id.imag.fr/Software/PSIBased on an
event description of the queueing network, it offers a simulation kernel based on "perfect simulation” algorithms.
Acknowledgement Author would like to thank Bernard Tanzi for his very efficient development of PSI2 code.
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