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Abstract

Traditional product form property of Markovian queue-
ing networks usually is vanished when capacity of queues
are finite and clients are blocked or rejected. A new efficient
simulation method, derived from Propp & Wilson [11] per-
fect simulation, is applied to the finite capacity queues con-
text. We present an algorithm to sample directly states of the
network according to stationary distribution. This method
has been applied to large queueing networks and some ex-
amples are given : loss estimation on Erlang models, usage
of the last queue in a line of queues with blocking, satura-
tion estimation for a multi-stage interconnection switch.

1. Introduction

Queuing systems are of fundamental interest for model-
ing communication networks. Servers represent the access
to links and queue capacity allows modeling of resource
contention and storage before transmission. Two kinds of
dimensioning are needed for network optimization. Time
dimensioning have to fix servers speed and space dimen-
sioning define memory capabilities of nodes. In all cases,
the estimation of service quality are useful before the net-
work deployment.

Under Markovian assumptions (Poisson arrivals, expo-
nential service time, probabilistic routing etc.), it has been
shown that the network of queues is modelled by a multi-
dimensional Markov jump process. Then the quality of ser-
vice is computed from the steady-state distribution of the
process. Fortunately, when queues have an infinite capacity
the steady-state distribution is product-form and could eas-
ily be computed in a reasonable time [4]. In some cases the
hypothesis of infinite capacity could be released, preserv-
ing the product form [10, 2]. Unfortunately, in most cases,
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the steady state distribution is not in a product form and ad-
equate approximation techniques should be applied. Many
works cover the domain of queuing networks with finite ca-
pacity, bibliographies of [9, 1] provide pointers to related
works.

Simulation approaches are alternative methods to esti-
mate quality of service of such networks. Based on dis-
crete event simulation [3] or on Markov properties (MCMC
methods) [6], simulations estimate the steady-state distribu-
tion on long run trajectories.

In this paper a specific simulation technique, “perfect
simulation”, is used to sample the steady state distribution.
Based on Propp & Wilson ideas [11], an algorithm is pro-
posed. By proving the monotonicity of queueing networks
with blocking and rejection, we improve drastically simu-
lation time. This technique have been applied on classical
models to validate statistically the approach and on huge
models to demonstrate the efficiency of the method.

2. Multi-dimensional Markov jump process

Consider a queueing network withK queues. The
state space of each queueQi is the set of integers
Xi = {0, · · · , Ci}, whereCi is the capacity of queueQi.
The state spaceX of the system is the Cartesian prod-
uct of allXi;

X = X1 × · · · × XK .

The natural order on integer is extended to a partial order
onX using component-wise ordering.

Definition 1 (Event)
An evente is an application defined onX , that associates
to each statex ∈ X a new state denoted byΦ(x, e). Φ is
called thetransition function of the system.

For example, a packet arrival, an end of service and routing,
a packet exit, are typical events in networks. The transition
corresponding to an arrival in queueQi is an increment of
xi provided thatxi < Ci. In that case one should precise
the routing policy (rejection, overflow on another queue,...).



Denote byE = {e1, · · · , ep} the set of events. This set
is supposed to be finite.

Definition 2 (Monotonous events)
An evente ∈ E is said to bemonotonousif it preserves the
partial ordering onX . That is

∀(x, y) ∈ X x 6 y ⇒ Φ(x, e) 6 Φ(y, e).

If all events are monotonous, the global system is said to be
monotonous.

Now, to achieve the model construction, a Poisson process
with intensityλj is associated to each eventej . These Pois-
son processes are supposed independent. For example con-
sider the following system described in figure 1.
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Figure 1. Queues with 2 types of contention

There are4 events:

e1 packet external arrival with rateλ0 = λ.

e2 end of service of the packet on the first queue and rout-
ing outside the network with rateλ1 = pµ.

e3 end of service on the first queue and routing to the sec-
ond queue, if the second queue is full the packet is lost.
The rate associated toe2 is λ2 = (1− p)µ.

e4 end of service on the second queue, if the first queue is
full the packet is blocked in the second queue and start
again a service. The rate associated toe3 is ν.

End of service events,e1, e2 ande3 make a transition if the
corresponding queue is not empty. When the queue is empty
the event is just a skip operation.

Theorem 1 (Uniformized process)
The uniformized process driven by the Poisson process with
rate Λ =

∑p
j=1 λi and generating at each time of the pro-

cess an evente ∈ E according to the probability distribution
(λ1

Λ , · · · , λp

Λ ) is equivalent to the queueing network Markov
process.

The proof of this result is obtained by writing down the in-
finitesimal transition equations. One should notice that the
idea is to introduce the independence between events, when
an event could not be applied to one statex the state is not
changed, the method is analogous with the rejection method
in stochastic simulation.

Proposition 1 (Uniformized monotonous system)
Provided that the system is monotonous, the discrete time
Markov chain embedded in the uniformized process is also
monotonous.

Consider now a typical routing evente, occurring in a
queueing network. This event is defined by the origin queue
Qi and a list of destinationsQj1 , Qj2 , · · · , Qji

with the se-
mantic :
- if Qi is empty do nothing;
- if Qi is not empty find the first non empty queueQjk

in
the list, decrements the number of packets inQi and incre-
ments the number of packets inQjk

- if all queues are full then reject the packet out of the net-
work.

Proposition 2 (Monotonicity of routing and rejection)
A routing event with rejection if all destination queues are
full is a monotone event.

The proof is done by exploring all possibilities. Let(x, y) ∈
X 2, such thatx 6 y. Let e be a routing event defined by its
origin Qi and its list of destinationsQj1 , Qj2 , · · · , Qji

.
- if yi = 0 thenxi = 0 and the event does not modify state
x andy; Φ(x, e) = x 6 Φ(y, e) = y;
- if yi > 0 andxi > 0, thenΦ(y, e)|i = yi − 1 > xi − 1 =
Phi(x, e)|i. LetQjk

the first non saturated queue in statey.
Becausex 6 y the first non saturated queue for statex is
either strictly beforeQjk

in the list and the corresponding
queue is saturated in statey or Qjk

is the first non saturated
queue in statex andy. In both cases, the order is preserved.

Proposition 3 (Monotonicity of routing and blocking)
A routing event with blocking in the original queue if all
destination queues are full is a monotone event.

The proof is similar to the proof of the previous proposition.
Clearly arrivals from outside or routing directly outside

are also monotone events.

Theorem 2 (Monotonous Markovian networks)
A Markovian network of queues with rejection routing or
blocking is monotonous.

This result is clear according to the previous propositions.
This result is an extension of a work from D. Mattson [8]

3. Perfect sampling method

Formally, when all the knowledge of the dynamics is in-
cluded in the state description, the system can be described
by a transition functionΦ, typically

Xn+1 = Φ(Xn, Un+1); (1)

whereXn isnth observed state of the system, and{Un}n∈Z
the sequence of inputs of the system, typically a sequence of



calls to aRandom function. This type of stochastic recur-
sive sequence has been widely studied in a general frame-
work [5] or [7] and some results related with perfect simu-
lation may be found in [12, 13].

It is clear that, if the{Un} are independent and identi-
cally distributed, the process{Xn}n∈Z defined by an ini-
tial valueX0 and the recursive equations (1) is a Markov
chain. Conversely, given a transition matrixP , it is possi-
ble to find a transition functionΦ such that a Markov chain
defined by (1) has transition matrixP [14].

Based on a stochastic recurrent sequence formulation,
the following algorithm provides directly a sample of the
steady state distribution.

Algorithm 1 Backward-coupling simulation (general ver-
sion)

for all x ∈ X do
y(x) ← x {choice of the initial value of the vectory,
n = 0}

end for
repeat

u ← Random;{generation ofu−n}
for all x ∈ X do

y(x) ← y(Φ(x, u)); {computation of the state at
time0 of the trajectory issued fromx at time−n}

end for
until All y(x) are equal
returny(x)

Provided that the operatorΦ is monotonous, as shown in
section 2, the algorithm could be simplified by making it-
eration only on maximum and minimum values of the state
space. In the open queuing networks situation, there is a
unique minimum (all queues are empty) and a unique max-
imum (all queues are full). Then We only iterates simulta-
neously 2 trajectories and the time reduction is in the order
of the size of the state space. Moreover, it has been shown
[11] that the mean coupling time is optimal when steps in
the past are multiplied by2 when trajectories issued from
maximum and minimum states have not coupled at time0.
In the algorithmM (resp.m) denotes the set of maximal
(resp. minimal) elements in the state space.

4. Examples

All simulations have been done on a 1Ghz Pentium 4
with 512Mo RAM, which is sufficient for our purpose.

4.1. Two queues

Consider the system in figure 1 with capacity300, rates
λ = 1.2, µ = 2, ν = 0.8 andp = 0.6 the routing probabil-
ity. The estimation of saturation of queue 2 that generates

Algorithm 2 Backward-coupling simulation (monotonous
version)

n=1;R[1]=Random;
repeat

n=2.n;
for all x ∈M ∪m do

y(x) ← x
end for
for i=n downto n/2+1do

R[i]=Random;
for all x ∈M ∪m do

y(x) ← Φ(y(x), R[i])
end for

end for
for i=n/2 downto 1do

for all x ∈M ∪m do
y(x) ← Φ(y(x), R[i])

end for
end for

until All y(x) are equal
returny(x)

losses is done on sample with size106. Saturation probabil-
ity is estimated to2.27 10−3 ± 0.08 10−3 with a 95% con-
fidence interval.

The size of state space of this network is90601. The
mean number of iterations before coupling is about107 sim-
ple transitions. The computation time of the generation of
one state distributed according steady state is2ms.

4.2. Priority servers

The basic model in performance evaluation of network
is the Erlang model. It consists in parallel servers, arriv-
ing packets are served by the first non empty server. If all
servers are busy the packet is rejected. If all servers have
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Figure 2. Erlang queueing system (overflow)

the same service rate, it is well known that the system is re-
versible and the stationary distribution could be analytically
computed. This property has been used to test the simula-
tion software. By goodness fitting tests, it has been shown



that the simulated sample is accepted byχ2 tests as repre-
sentative of the theoretical distribution.

Moreover, with non homogeneous servers, the sys-
tem could be simulated easily. An experiment has
been done with30 servers,λ = 20 and µi = 1 for
i ∈ {1, · · · , 10}, µi = 0.8 for i ∈ {11, · · · , 20} and
µi = 0.5 for i ∈ {20, · · · , 30}. Saturation probability is es-
timated to0.0579 ± 4.710−4, loss rate is estimated to1.1
packets per second (the system is loaded).

In that case, the size of the system is230 ' 109 states, the
computation time of the generation of one state distributed
according to steady state is less than0.4ms and the mean
number of iterations is577 per generated state.

4.3. Blocking line

To observe effect of blocking a line of queues is con-
sidered. Queue capacities have been fixed to100, arrival

C1 µ1 µ2
λ

reject

C2 C3 µ3

C4 µ4 C5 µ5

Figure 3. Line of queues with blocking

rate is1.2 and service rates0.8. Blocking probabilities for
each queue have been estimated :b1 = 0.34, b2 = 0.02
b3 = 0.02, b4,= 0.02. In that case, the size of the system
is 1006 = 1012 states, the computation time of the genera-
tion of one state distributed according to steady state is less
than1ms.

4.4. Delta networks

To deal with larger networks, a delta network with 4
stages have been implemented. All queues have a capacity
of 100 packets. With a load of0.9 on each input queue and
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Figure 4. A regular network

a uniform routing at each stage (probability1/2), the mean
number of iterations to get a state is400000, the coore-
sponding computation time is135ms per generated state.

It is important to notice that the state space is huge10128

and the presented method remains efficient.

5. Future works
In this article have been established monotonicity prop-

erties of Markovian queueing networks with finite capac-
ity queues. These properties are fundamental to improve
stochastic simulation of such networks. It appears that the
simulation time is short enough to estimate probability of
rare events with a sufficient confidence interval. Moreover,
perfect simulation of performances indexes could also be
done by the method developed by [14].

A free software is under development. Current version is
at http://www-id.imag.fr/Software/PSI2. Based on an event
description of the queueing network, it offers a simulation
kernel based on ”perfect simulation” algorithms.
Acknoledgement: Author would like to thank Bernard
Tanzi for his very efficient development of PSI2 code.
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[6] P. Brémaud.Markov Chains: Gibbs fields, Monte Carlo Sim-
ulation and Queues. Springer-Verlag, 1999.

[7] P. Diaconis and D. Freedman. Iterated random functions.
SIAM Review, 41(1):45–76, 1999.

[8] D. Mattson. On Perfect Simulation of Markovian Queue-
ing Networks with Blocking. PhD thesis, Chalmers G̈oteborg
University, 2002.

[9] R. Onvural. Survey of closed queueing networks with block-
ing. ACM Computing Surveys, 22(2):83–121, 1990.

[10] H. Perros.Queuing Networks with Blocking Exact and Ap-
proximate Solutions. Oxford University Press, 1994.

[11] D. Propp, J.and Wilson. Exact sampling with coupled
Markov chains and applications to statistical mechanics.
Random Structures and Algorithms, 9(1&2):223–252, 1996.

[12] O. Stenflo. Ergodic theorems fory Iterated Function Sys-
tems controlled by stochastic sequences. Doctoral thesis n.
14, Umea university, 1998.

[13] O. Stenflo. Ergodic theorems for markov chains represented
by iterated function systems.Bull. Polish Acad. Sci. Math,
2001.

[14] J.-M. Vincent and C. Marchand. On the exact simulation of
functionals of stationary markov chains.Linear Algebra and
its Applications, 386:285–310, 2004.


