
A Randomized Quasi-Monte Carlo Simulation Method for Markov Chains

Pierre L’Ecuyer
GERAD and Département d’Informatique et de Recherche Opérationnelle

Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal (Québec), H3C 3J7, Canada
lecuyer@iro.umontreal.ca

Christian Lécot
Laboratoire de Mathématiques, Université de Savoie, 73376 Le Bourget-du-Lac Cedex, France,

Christian.Lecot@univ-savoie.fr

Bruno Tuffin
IRISA-INRIA, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France

Bruno.Tuffin@irisa.fr

Abstract. We introduce and study a randomized quasi-Monte Carlo method for estimating the

state distribution at each step of a Markov chain, under the assumption that the chain has a totally

ordered (discrete or continuous) state space. The number of steps in the chain can be random and

unbounded. The method simulates n copies of the chain in parallel, using a (d + 1)-dimensional

low-discrepancy point set of cardinality n, randomized independently at each step, where d is the

number of uniform random numbers required at each transition of the Markov chain. This technique

is effective in particular to obtain a low-variance unbiased estimator of the expected total cost up

to some random stopping time, when state-dependent costs are paid at each step.

We provide numerical illustrations where the variance reduction with respect to standard Monte

Carlo is substantial. The variance is reduced by factors of several thousands in some cases. We

prove bounds on the convergence rate of the worst-case error and variance for special situations. In

line with what is typically observed in RQMC contexts, our empirical results indicate much better

convergence than what these bounds guarantee.

Subject classifications: Simulation: efficiency. Probability: Markov processes.

Area of review: simulation.

Keywords: Variance reduction, randomized quasi-Monte Carlo, Markov chain, random walk,

regenerative process, digital nets, lattice rules.

1

1 Introduction

A wide variety of real-life systems can be modeled as Markov chains with a large state space. In

most interesting situations, analytic formulas are not available for these Markov chains and matrix-

based numerical methods require too much time, so Monte Carlo simulation becomes the standard

way of estimating performance measures for these systems.

In this paper, we propose a novel randomized quasi-Monte Carlo (RQMC) method to im-

prove simulation efficiency for discrete-time Markov chains with a totally ordered state space. The

method simulates n copies of the chain in parallel and induces negative dependence between the

corresponding sample paths by using some form of generalized antithetic variates (Wilson, 1983;

Ben-Ameur et al., 2004). Our aim is that the empirical distribution of the states of these n chains,

at any given step j, is a better approximation of the corresponding theoretical distribution than if

the n chains were simulated independently. As a result, performance measure estimators obtained

by taking an average across the n copies of the chain, will typically have much smaller variance.

More specifically, we consider a Markov chain {Xj , j ≥ 0} with state space X , which evolves

according to the stochastic recurrence:

X0 = x0, Xj = ϕj(Xj−1,Uj), j ≥ 1, (1)

where the Uj are i.i.d. random vectors uniformly distributed over the d-dimensional unit hypercube

[0, 1)d. Every discrete-time Markov chain that can be simulated on a computer fits this framework

with d = 1 (it suffices to define the chain so that each newly generated uniform random number

in the simulation corresponds to one step of the chain). Here, we simply assume that d is a finite

constant. The random vector Uj represents the uniform random numbers required to simulate one

step of the chain.

We want to estimate the expected total cost µ = E[Y] where

Y =
τ∑

j=1

cj(Xj), (2)

each cj : X → R is a cost function, τ is a stopping time with respect to the filtration {Fj , j ≥ 0}

generated by {(j, Xj), j ≥ 0}, E[τ] < ∞, and we assume that the functions ϕj and cj are easy to

2

evaluate at any given point, for each j. We also assume (implicitly) that X , the ϕj ’s, and the cj ’s

satisfy the appropriate measure-theoretic requirements so that all objects of interest in this paper

are well-defined.

The standard Monte Carlo (MC) method simulates the random variable Y as follows. For

j = 1, . . . , τ , generate Uj ∼ U [0, 1)d, compute Xj = ϕj(Xj−1,Uj), and add the value of cj(Xj)

to an accumulator, which at the end will contain the value of Y . This can be replicated n times

independently, and the sample mean and variance of the n values of Y can be taken as unbiased

estimators of the exact mean and variance of Y . From this, one can compute a confidence interval

on µ, e.g., via the central-limit theorem.

Let s = supω dτ , where the supremum is taken over all possible sample paths ω, so s = ∞ if

τ is unbounded. In this setting, the random variable Y can be written as a function of a sequence

of s i.i.d. U(0, 1) random variables, say Y = f(U1, . . . , Us), for some complicated function f ,

where Uj = (Ud(j−1)+1, . . . , Udj) for each j. The MC method generates n independent random

points Vi = (Ui,1, . . . , Ui,s), i = 1, . . . , n, in the s-dimensional unit hypercube [0, 1)s, evaluates the

function f at each of these points, and takes the average Ȳn of these n evaluations as an estimator

of µ.

The idea of RQMC is to induce negative dependence between the points Vi by generating them

in a way that

(i) each point Vi is still uniformly distributed in [0, 1)s and

(ii) the point set {V1, . . . ,Vn} covers the hypercube [0, 1)s more evenly (in some sense) than a

set of independent random points.

A point set that satisfies these two conditions is called a RQMC point set. The estimator Ȳn is

computed by averaging the values of f over the n points in the same way as for MC. These n

values are not independent, but we can estimate the variance of Ȳn by replicating this scheme m

times, with independent randomizations of the same point set. Under simple conditions on the

randomization, the sample mean and sample variance of these m averages are unbiased estimators

3

of the exact mean and variance of Ȳn. Further details on this classical RQMC approach (and

variants of it for high-dimensional contexts) can be found in Owen (1998); L’Ecuyer and Lemieux

(2000, 2002) and other references given there. This approach is typically more efficient than MC

when s is small (e.g., less than 20 or so) or if the function f has low effective dimension in some

sense, as explained in Owen (1998) and L’Ecuyer and Lemieux (2002).

The RQMC method proposed in this paper operates differently. We simulate n copies of the

chain in parallel. To simulate step j for all copies, we use a randomized (d+1)-dimensional highly-

uniform (or “low-discrepancy”) point set P ′
n,j of cardinality n, as explained in the next section,

where d � s typically. These point sets are randomized independently at the different steps, in

a way that the sample path of any given copy of the chain obeys the correct probability law (the

same as with the MC method). As a result, we have an unbiased estimator for the average cost.

The aim of the proposed method is to induce dependence across the n copies so that the empirical

distribution of the n values of Xj (at step j) gives a much better approximation of the distribution

Fj of the random variable Xj than if the chains were simulated independently.

Our approach is an adaptation of a deterministic method proposed and studied by Lécot and

Tuffin (2004), based on ideas of Lécot and Ogawa (2002), for approximating transient measures over

a fixed number of steps, for discrete-time and discrete-state Markov chains with a totally ordered

state space. That method uses a (0, 2)-sequence in base 2. At step j of the chain, it reorders the

n copies according to their current states and “simulates” the transitions (next states) for the n

copies by employing the elements nj to nj +n−1 of the (0, 2)-sequence in place of uniform random

numbers to drive the simulation. It assumes that simulating each transition of the chain requires

a single uniform random variate. Convergence to the correct value was proved by Lécot and Tuffin

(2004) under a condition on the structure of the transition probability matrix of the Markov chain.

In contrast, our new method is a randomized algorithm that provides an unbiased estimator. It

also applies to Markov chains with continuous state space, with a random and unbounded number

of steps, and the number d of uniform random variates that are required to generate the next state

in one step of the Markov chain can be larger than 1. It thus covers a much broader range of

applications.

4

We have theoretical results on the convergence rate of the variance of the mean estimator (as

n →∞) for special cases only, but our empirical results with a variety of examples indicate that this

variance goes down much faster (as a function of n) with the proposed method than for standard

MC and also faster than classical RQMC in many situations. Note that this gap between proven

error (or variance) bounds and empirical performance also exists for traditional QMC and RQMC

methods.

In the next section, we motivate and define our RQMC sampling algorithm, called array-

RQMC. Convergence results for special settings are given in Section 3. Section 4 illustrates the

method via several numerical examples, showing that it can improve the simulation efficiency by

large factors compared with standard MC. Our experiments also provide strong empirical evidence

of the effectiveness of applying a baker transformation to a randomly-shifted lattice rule for both

classical RQMC and array-RQMC, and of applying a linear matrix scrambling to a Sobol’ net.

2 The Array-RQMC Algorithm

We now assume (for the remainder of the paper) that X ⊆ R` ∪ {∞}, and that a total order has

been defined on X , for which ∞ is the largest state. The state ∞ is an absorbing state used to

indicate that we have reached the stopping time τ . That is, Xj = ∞ for j > τ , and cj(∞) = 0.

The array-RQMC algorithm works as follows. At step 1, we take a RQMC point set Pn,1 =

{u0, . . . ,un−1} in [0, 1)d, define

Xi,1 = ϕ1(x0,ui) for i = 0, . . . , n− 1,

and estimate the distribution F1 of X1 by the empirical distribution F̂1 of X0,1, . . . , Xn−1,1. This

5

gives the following approximation, where I denotes the indicator function:

F1(x) = P [X1 ≤ x]

=
∫

[0,1)d

I(ϕ1(x0,u) ≤ x) du (3)

≈ 1
n

n−1∑
i=0

I(ϕ1(x0,ui) ≤ x) (4)

=
1
n

n−1∑
i=0

I(Xi,1 ≤ x) def= F̂1(x),

which amounts to estimating the integral (3) by RQMC in (4).

At step j, we use the empirical distribution F̂j−1 of X0,j−1, . . . , Xn−1,j−1 as an approximation

of the distribution Fj−1 of Xj−1. Let Pn,j = {u0, . . . ,un−1} be a RQMC point set in [0, 1)d such

that the (d+1)-dimensional point set P ′
n,j = {u′i = ((i+0.5)/n,ui), 0 ≤ i < n} is “highly uniform”

(or has “low discrepancy”) in [0, 1)d+1, in a sense that we leave open for the moment (specific

definitions in the asymptotic sense, as n → ∞, are adopted in the propositions of Section 3). We

estimate Fj by the empirical distribution F̂j of the values Xi,j = ϕj(X(i),j−1,ui), i = 0, . . . , n− 1,

where X(0),j−1, . . . , X(n−1),j−1 are the sorted states at step j−1. This can be interpreted as follows,

where F−1(v) is defined as inf{x ∈ R : F (x) ≥ v}:

Fj(x) = P [Xj ≤ x] = E[I(ϕj(Xj−1,Uj) ≤ x)]

=
∫
X

∫
[0,1)d

I(ϕj(y,u) ≤ x) du dFj−1(y) (5)

≈
∫
X

∫
[0,1)d

I(ϕj(y,u) ≤ x) du dF̂j−1(y) (6)

=
∫

[0,1)d+1

I(ϕj(F̂−1
j−1(v),u) ≤ x) du dv (7)

≈ 1
n

n−1∑
i=0

I(ϕj(F̂−1
j−1((i + 0.5)/n),ui) ≤ x) (8)

=
1
n

n−1∑
i=0

I(ϕj(X(i),j−1,ui) ≤ x)

=
1
n

n−1∑
i=0

I(Xi,j ≤ x) def= F̂j(x).

In (6), we have replaced Fj−1 in (5), by its approximation F̂j−1. In (8), we approximate the integral

in (7) by RQMC over [0, 1)d+1 with the point set P ′
n,j . Observe that this point set gives a perfect

6

stratification of the distribution F̂j−1, with exactly one observation per stratum (the strata are the

jumps of F̂j−1). On the other hand, these observations are not independent across the strata.

Putting these pieces together, we get the following algorithm (the “for” loops are written using

the C/C++/Java syntax and indentation alone indicates the scope of the loops):

Array-RQMC algorithm:

Initialization. Select a d-dimensional QMC point set P̃n = (ũ0, . . . , ũn−1) and a

randomization of P̃n such that (a) each randomized point is uniform over [0, 1)d

and (b) if Pn = (u0, . . . ,un−1) denotes the randomized version, then P ′
n = {((i +

0.5)/n, ui), 0 ≤ i < n} has “low discrepancy”.

Simulate chains. Simulate in parallel n copies of the chain, numbered 0, . . . , n− 1, as

follows:

For (j = 1; X0,j−1 < ∞; j++)

Randomize P̃n afresh into Pn = {u0, . . . ,un−1};

For (i = 0; i < n and Xi,j−1 < ∞; i++) Xi,j = ϕj(Xi,j−1,ui);

Sort (and renumber) the chains for which Xi,j < ∞ by increasing order

of their states. (The sorted states X0,j , . . . , Xn−1,j provide F̂j).

Output. Return the average Ȳn of the n values of Y as an estimator of µ.

Let Ȳn,j denote the average cost at step j, across the n copies. We have Ȳn =
∑∞

j=1 Ȳn,j .

Proposition 1 The averages Ȳn,j and Ȳn are unbiased estimators of E[cj(Xj)] and µ, respectively.

Proof. The successive steps of the chain use independent randomizations. Therefore, for each

chain, the vectors that take place of the Uj ’s in the recurrence (1) to generate the successive steps

j of the chain are independent random variables uniformly distributed over [0, 1)d. Thus, any given

copy of the chain obeys the correct probabilistic model defined by (1) and (2), so cj(Xj) and Y

have the correct expectations, E[cj(Xj)] and µ, and their averages over the n copies as well. �

7

To estimate the variance of Ȳn and compute a confidence interval on µ, we can replicate this

entire procedure independently m times. That is, across the m replications, all randomizations are

independent. With this, we have:

Proposition 2 The empirical variance of the m copies of Ȳn is an unbiased estimator of Var[Ȳn].

Proof. This follows from the fact that the m copies of Ȳn are i.i.d. unbiased estimators of µ.

These m copies are independent because randomized points from different copies at any given step

are independent. �

This proposition implies that the variance of the overall average converges as O(1/m) when

m →∞. In the next section, we examine the convergence rate as a function of n when n →∞.

3 Convergence

Classical error bounds for numerical integration by quasi-Monte Carlo (QMC) methods are based

on the Koksma-Hlawka inequality, which bounds the worst-case integration error by the product

of the Hardy-Krause total variation V (f) of the integrand f and the rectangular star discrepancy

D∗
n(Pn) of the point set Pn (see Niederreiter, 1992, for the definitions and further details). That is,

‖Ȳn − µ‖ ≤ V (f)D∗
n(Pn)

if Ȳn represents the average value of f over the n points and µ is its theoretical average over the

unit hypercube. The star discrepancy of a point set Pn ∈ [0, 1)s is defined as

D∗
n(Pn) = sup

x=(x1,...,xs)∈[0,1)s

|card(Pn ∩ [0,x))/n− vol([0,x))|

where [0,x) is the rectangular box with opposite corners 0 and x, and vol denotes its volume.

The definition of V (f) is more complicated. We just point out that it is infinite whenever f has a

discontinuity not aligned with one of the axes (Owen, 2004). The integrand I(ϕj(F̂−1
j−1(v),u) ≤ x)

in (7) is 1 in part of the unit cube, and 0 elsewhere. The shape and complexity of the boundary

8

between these two regions depends on ϕ1, . . . , ϕj . We assume that these regions are at least Jordan-

measurable sets. For continuous state spaces X , the Hardy-Krause total variation of this indicator

function is typically infinite, because the boundary is typically not aligned with the axes, so the

classical Koksma-Hlawka inequality is not helpful to bound the integration error in (8).

In what follows, we prove bounds on the convergence rate directly from first principles, for

special cases for which d = 1 (so X ⊆ R and the distribution function Fj is defined over R). We

will end up bounding |Ȳn,j−E[cj(Xj)]| by the product of the Kolmogorov distance between F̂j and

Fj defined as

∆j = sup
x∈X

|F̂j(x)− Fj(x)| = sup
x∈R

|F̂j(x)− Fj(x)|

and the total variation of the cost function cj . This is Proposition 8. To bound this product, we

will obtain bounds on ∆j by using notions of histogram and integral discrepancies whose properties

are examined in the next subsection.

Related results have been obtained by Lécot (1996) in a more general setting (general real-

valued functions defined over the unit hypercube and having bounded variation) but under the

stronger assumption that Pn is a (t, m, s)-net and with different methods of proof.

3.1 Histogram and Integral Discrepancies

A histogram with L intervals over the unit square is defined as follows. Partition the unit interval

[0, 1) at the bottom of the square into L subintervals, say of lengths q1, . . . , qL where q1+· · ·+qL = 1.

Over the ith interval, put a rectangle of height hi, where 0 ≤ hi ≤ 1, and with the same width

as the interval. The histogram H is the union of these rectangles. We say that the histogram is

monotone (increasing or decreasing) if h1 ≤ · · · ≤ hL or h1 ≥ · · · ≥ hL.

Let H(L) be the family of all histograms with L intervals over the unit square, and H+(L) the

subfamily of all monotone histograms. The L-histogram discrepancy of a point set Pn in the unit

square is defined as

Dh(L,Pn) = sup
H∈H(L)

|card(Pn ∩H)/n− area(H)|

9

where area(H) denotes the area of H. If H(L) is replaced by H+(L), we get the L-staircase

discrepancy of Pn, denoted D+
h (L,Pn). The following lemma is rather straightforward:

Lemma 3 Let Pn denotes the first n points of a two-dimensional low-discrepancy sequence whose

rectangular star discrepancy satisfies D∗
n(Pn) = O(n−1 log n). Then there is a constant K such that

for all L,

D+
h (L,Pn) ≤ Dh(L,Pn) ≤ KLn−1 log n.

Proof. In every histogram H, each rectangle can be written as a difference of two rectangular

boxes anchored at the origin. Thus, H can be written as a sum and difference of 2L such boxes.

But we know that the rectangular star discrepancy of Pn is in O(n−1 log n) and the last inequality

follows. The other inequality is obvious. �

Several two-dimensional sequences that satisfy this requirement are readily available (Niederre-

iter, 1992); for instance, one can take the two-dimensional Sobol’ sequence. However, the bound in

Lemma 3 is linear in L so it is practically not very useful for Markov chains with large state spaces

(assuming that each state of the chain is associated with one of the L subintervals and vice-versa).

The next lemma provides a bound that does not depend on L. It is based on Assumption 1 and a

notion of integral discrepancy obtained by sending L to infinity.

For a function f : [0, 1] → R, the total variation of f is defined as

V (f) = sup
L≥1, 0=x0<···<xL=1

L∑
j=1

|f(xj)− f(xj−1)| =
∫ 1

0
df(x).

It is well known that a function of bounded variation over a given interval is Riemann-integrable

over that interval. Let F(v) denote the set of functions f : [0, 1] → [0, 1] such that V (f) ≤ v.

For f : [0, 1] → [0, 1], let H(f) = {(x, y) ∈ [0, 1]2 : 0 ≤ y ≤ f(x)}, the surface under f . We

define the integral discrepancy at variation v, for a point set Pn, by

Di(Pn, v) = sup
f∈F(v)

|card(Pn ∩H(f))/n− area(H(f))| . (9)

10

If f has bounded variation, H(f) can be approximated arbitrarily closely by an histogram H having

L rectangles of heights h1 = f(x1), . . . , hL = f(xL) where 0 < x1 < · · · < xL = 1 for some large L.

This histogram has total variation

V (H) =
L∑

i=2

|hi − hi−1| ≤ V (f).

Reciprocally, any such histogram defines a piecewise-constant function f of total variation V (f) =

V (H). Hence, we have that

Di(Pn, v) = sup
L≥1, H∈H(L), V (H)≤v

|card(Pn ∩H)/n− area(H)| .

Assumption 1 Suppose that n is a square, so
√

n is an integer, and that if we partition of the

unit square into n subsquares of size n−1/2 × n−1/2, each of those subsquares contains exactly one

point from Pn.

Lemma 4 Under Assumption 1, for any v ≥ 0, we have Di(Pn, v) ≤ (v + 1)n−1/2.

Proof. Consider a function f : [0, 1] → [0, 1] with V (f) ≤ v. We define the extended graph

of f , denoted G(f), as the boundary between H(f) and [0, 1]2 \ H(f). This is the graph of f ,

{(x, f(x)) : 0 ≤ x ≤ 1}, to which we add vertical lines that link the graph pieces where f is

discontinuous. The idea of the proof is to bound the number of subsquares that intersect G(f)

and then bound the error in terms of this number. The n squares are partitioned into
√

n columns

that correspond to
√

n intervals on the horizontal axis. Suppose that G(f) goes into `j different

subsquares in column j. Clearly, these `j subsquares must form a connected rectangle. For any

of these subsquares S, we have an overestimation of area(H(f) ∩ S) if the point of Pn lying in

subsquare S is in H(f) and underestimation otherwise. The total error in any given column is

the total amount of overestimation minus the total amount of underestimation. Let St,j and Sb,j

denote the top and bottom subsquares from this rectangle, respectively. They may be the same

subsquare, if `j = 1.

Suppose that we are overestimating in St,j . If we are underestimating in Sb,j , or if the top

and bottom subsquares are the same, the combined error in the top and bottom subsquares cannot

11

exceed 1/n, so the error in column j is at most (`j − 1)/n. Otherwise, i.e., if we are also overesti-

mating in Sb,j and `j ≥ 2, then the error in the bottom subsquare is the surface of this subsquare

which is above G(f). This surface cannot exceed Vb,jn
−1/2 where Vb,j is the variation of f in this

subsquare. Then in this second case, the error in column j is at most (`j − 1)/n + Vb,jn
−1/2. But

in both cases, the total variation Vj in column j satisfies Vj ≥ (`j − 2)n−1/2 + Vb,j , so the error in

column j cannot exceed Vjn
−1/2 + n−1. This same error bound can be obtained by a symmetrical

argument in the case where we are underestimating in St,j .

By adding these inequalities over all columns, we obtain that the total error cannot exceed

V (f)n−1/2 + n1/2n−1 = (V (f) + 1)n−1/2 ≤ (v + 1)n−1/2. By taking the sup over f as in (9), the

result follows. �

Let F+ be the set of monotone functions f : [0, 1] → [0, 1] and define

D+
i (Pn) = sup

f∈F+

|card(Pn ∩H(f))/n− area(H(f))| .

For f ∈ F+, V (f) cannot exceed 1. This gives:

Corollary 5 Under Assumption 1, we have D+
i (Pn) ≤ 2n−1/2.

To see that this discrepancy bound is tight, consider the constant function f(x) = n−1/2(1+ ε)

for a small ε > 0 and suppose that each column has two points in H(f). Then V (f) = 0 and the

error is (1− ε)n−1/2, which can be arbitrarily close to the bound n−1/2.

Instead of asking only for the points of Pn to be evenly distributed among the n subsquares, we

could have the stronger requirement that they form a (0, k, 2)-net in base 2, assuming that n = 2k

for some integer k. This means that for every partition of the unit square into n rectangles of

width 2−q and height 2−k+q for some q = 0, 1, . . . , k, every rectangle contains exactly one point.

Consider the function f(x) = x. Proposition 5 of Lécot (1996) shows that for this example, there

is a (0, k, 2)-net (namely the Hammersley point set in base 2) for which the error is n−1/2/2. In

other words, the rate of the bound of Lemma 4 is tight even under this stronger assumption.

12

3.2 Error Bounds on the State Distribution

Here we derive bounds on the distance ∆j between F̂j and Fj , under the following assumption,

which implies that each ϕj is nondecreasing with respect to its second argument.

Assumption 2 The Markov chain has a one-dimensional state space X ⊆ R, so d = 1, and at each

step j, we use inversion from a single uniform to generate the next state Xj from its conditional

distribution given Xj−1.

At step j of the Markov chain, for x ∈ X and ` ∈ R, let

Fj(`) = P [Xj ≤ `],

Fj(` | x) = P [Xj ≤ ` | Xj−1 = x],

Λj(`) =
∫ ∞

−∞
|dFj(` | x)|, and

Λj = sup
`∈R

Λj(`),

where the Stieltjes differential dFj(` | x) in the definition of Λj(`) is with respect to x. Thus, Λj(`)

is the total variation of the function Fj(` | ·). If the Markov chain is stochastically monotone, then

each Fj(` | ·) is monotone and Λj cannot exceed 1.

Let F̂j be the empirical distribution of the states of the n copies of the chain at step j and

F̃j(`) =
∫ ∞

−∞
Fj(` | x)dF̂j−1(x) =

1
n

n−1∑
i=0

Fj(` | X(i),j−1),

so F̃j is the conditional distribution function of Xj when Xj−1 is generated from F̂j−1. The value

of F̃j(`) is equal to the area of the histogram Hj,` whose height over the interval [i/n, (i + 1)/n) is

Fj(` | X(i),j−1), for i = 0, . . . , n − 1. This histogram Hj,` is inside the unit square [0, 1)2. We also

have that

V [Hj,`] =
n−1∑
i=1

∣∣Fj(` | X(i−1),j−1)− Fj(` | X(i),j−1)
∣∣ ≤ Λj(`) ≤ Λj . (10)

Define ∆j(`) = F̂j(`)− Fj(`). We have ∆0 = 0 and

∆j = sup
`∈R

|∆j(`)|.

The following proposition provides bounds on ∆j .

13

Proposition 6 Let Assumption 2 holds.

(a) Suppose that the Markov chain has a finite state space X = {1, . . . , L} and that the star

discrepancy of each P ′
n,j satisfies D∗

n(P ′
n,j) = O(n−1 log n) w.p.1 (this can easily be achieved by

taking a (0, 2)-sequence in some base b). Then

|F̂j(`)− F̃j(`)| ≤ KLn−1 log n

for some constant K. If this holds for all j ≥ 1 and ` ∈ R, then

∆j ≤ KLn−1 log n

j∑
k=1

j∏
i=k+1

Λi. (11)

for all j, for some constant K.

(b) If P ′
n,j satisfies Assumption 1, then for all j ≥ 1 and ` ∈ R,

|F̂j(`)− F̃j(`)| ≤ (Λj(`) + 1)n−1/2

and

∆j ≤ n−1/2
j∑

k=1

(Λk + 1)
j∏

i=k+1

Λi. (12)

Proof. At step j, we have

|F̂j(`)− Fj(`)| ≤ |F̂j(`)− F̃j(`)|+ |F̃j(`)− Fj(`)|. (13)

To bound ∆j we will bound the two quantities on the right of (13). We have

F̃j(`)− Fj(`) =
∫ ∞

−∞
Fj(` | x)dF̂j−1(x)−

∫ ∞

−∞
Fj(` | x)dFj−1(x)

=
∫ ∞

−∞
(Fj−1(x)− F̂j−1(x))dFj(` | x) (14)

where the second equality is obtained via integration by parts. Therefore,

|F̃j(`)− Fj(`)| ≤
∫ ∞

−∞
|F̂j−1(x)− Fj−1(x)||dFj(` | x)| ≤ Λj(`)∆j−1 ≤ Λj∆j−1. (15)

From (15) and (13), we have

∆j ≤ Λj∆j−1 + sup
`∈R

|F̂j(`)− F̃j(`)|.

14

Together with the fact that ∆0 = 0, this gives

∆j ≤
j∑

k=1

sup
`∈R

|F̂k(`)− F̃k(`)|
j∏

i=k+1

Λi, (16)

where an empty product is assumed to be 1.

We recall that F̃j(`) is the area of the histogram Hj,` and observe that F̂j(`) is the fraction of

the points of P ′
n,j that fall in Hj,`. Therefore,

F̂j(`)− F̃j(`) = card(P ′
n,j ∩Hj,`)/n− area(Hj,`), (17)

which implies that

|F̂j(`)− F̃j(`)| ≤ Di(P ′
n,j , V (Hj,`)) ≤ Di(P ′

n,j ,Λj(`)). (18)

This, together with Lemmas 3 and 4, proves the proposition. �

Corollary 7 If the Markov chain is also stochastically increasing, i.e., P [Xj ≥ x | Xj−1 = y] is

non-decreasing in y for each j, the bound (12) becomes

∆j ≤ 2jn−1/2.

Proof. Recall that in that case, Fj(` | x) is non-decreasing in x, so Λj ≤ 1 for each j. �

3.3 Worst-Case Error Bounds on the Expected Average Cost

The next step is to bound the error on the expected cost at step j. Let

V (cj) =
∫ ∞

−∞
|dcj(x)|,

the total variation of the cost function cj . Our bounds on ∆j proved in the preceding section

readily provide bounds on the error
∣∣Ȳn,j − E[cj(Xj)]

∣∣ as follows, in the case where cj has bounded

variation.

Proposition 8 We have

∣∣Ȳn,j − E[cj(Xj)]
∣∣ ≤ ∆jV (cj).

15

Proof. Using integration by parts for the third equality, we get

∣∣Ȳn,j − E[cj(Xj)]
∣∣ =

∣∣∣∣∣ 1n
n−1∑
i=0

cj(Xi,j)− E[cj(Xj)]

∣∣∣∣∣
=

∣∣∣∣∫ ∞

−∞
cj(`)dF̂j(`)−

∫ ∞

−∞
cj(`)dFj(`)

∣∣∣∣
=

∣∣∣∣∫ ∞

−∞
(F̂j(`)− Fj(`))dcj(`)

∣∣∣∣
≤

∫ ∞

−∞
|∆j(`)||dcj(`)|

≤ ∆jV (cj).

�

This proposition tells us that the square error of Ȳn,j converges at worst at the same rate as

∆2
j when n →∞. If τ is bounded, this implies that |Ȳn − µ|2 converges as O(

∑τ
j=1 ∆2

j) = O(1/n)

in the worst case.

3.4 Variance Bounds for array-RQMC

Proposition 6(b) gives a worst-case deterministic bound of O(1/n) for the square error of Ȳn,j , in

contrast with an expected square error of O(1/n) for ordinary Monte Carlo. In what follows, we

obtain a better bound on the convergence rate of the variance by exploiting randomization. The

proof is given in a setting where the following holds:

Assumption 3 If the unit square [0, 1)2 is partitioned into n subsquares as in Assumption 1, each

subsquare contains exactly one point of P̃ ′
n,j, and the positions of these points within their respective

subsquares are pairwise independent and uniformly distributed over the subsquare.

This is an instance of stratified sampling over the unit square, with independent samples across

the strata. The array-RQMC algorithm does not satisfy this assumption, because the positions of

the points in the subsquares that are on top of each other are not independent. However, proving

the result without the independence assumption is more difficult and we leave this for future work.

Typically, the overall dependence created by the array-RQMC algorithm will be negative and will

16

tend to reduce the variance of the expressions in Proposition 9, so we should expect the variance

in the setting of the RQMC algorithm to be even smaller. We made numerical experiments that

did confirmed that, for a few examples.

Define

Γj =
1

4n3/2

j∑
k=1

(Λk + 1)
j∏

i=k+1

Λ2
i .

Proposition 9 Under Assumptions 1, 2, and 3, for each j and `, we have

Var[F̂j(`)− F̃j(`)] ≤ (Λj + 1)n−3/2/4, (19)

Var[F̂j(`)− Fj(`)] ≤ Γj , (20)

and

E
[(

Ȳn,j − E[cj(Xj)]
)2

]
≤ ΓjV (cj)2.

Proof. To prove (19), we first recall that F̃j(`) is the area of the histogram Hj,` whereas

F̂j(`) is the fraction of P ′
n,j that falls in this histogram. We enumerate the n subsquares with

i = 0, . . . , n−1. Let Si be the ith subsquare and δj(`, i) = card(P̃ ′
n,j ∩Hj,`∩Si)−n area(Hj,`∩Si).

We have

F̂j(`)− F̃j(`) = card(P ′
n,j ∩Hj,`)/n− area(Hj,`) =

n−1∑
i=0

δj(`, i)/n.

For any given j and each i, δj(`, i) is a Bernoulli random variable minus its mean, so E[δj(`, i)] = 0

and Var[δj(`, i)] ≤ 1/4. These Bernoulli random variables have nonzero variance only for the

subsquares that intersect the histogram boundary (that separates Hj,` from [0, 1]2 \Hj,`), because

for the other subsquares they are constant.

Here we consider a fixed j and drop the subscript j for a moment. Let Sb,c and St,c denote

the lowest and highest subsquares that intersect the histogram boundary in column c, and let Vb,c

and Vt,c be n1/2 times the variation of the histogram in these two subsquares. Let pc be n times

the area of St,c contained in the histogram and qc be n times the area of Sb,c not contained in the

histogram. We suppose, until indicated otherwise, that Sb,c and St,c are not the same subsquare.

17

Then the Bernoulli variables δj(`, i) that correspond to these two subsquares are independent and

have variances bounded by pc(1 − pc) and qc(1 − qc) (which cannot exceed 1/4), respectively. We

will now prove the following bound on the sum of their variances:

pc(1− pc) + qc(1− qc) ≤
Vb,c + Vt,c + 1

4
. (21)

Denote v = Vb,c + Vt,c. If v ≥ 1, (21) holds trivially, so let us assume that v ≤ 1. At any given

point on the horizontal axis, the histogram boundary cannot be in Sb,c and St,c at the same time.

Let ρ be the fraction of the horizontal interval in column c where the histogram is in St,c. Then we

have pc ≤ ρVt,c and qc ≤ (1− ρ)Vb,c. We now observe that either ρVt,c ≤ v/4 or (1− ρ)Vb,c ≤ v/4.

To see this, consider a rectangle of width 1 and height v, with bottom left corner at point (0, 0),

divided into four subrectangles by a vertical line at ρ and an horizontal line at Vt,c. The quantities

ρVt,c and (1−ρ)Vb,c are the surfaces of two opposite subrectangles of this rectangle, so their surfaces

cannot be both larger than a quarter of the rectangle’s surface v. Indeed, suppose that ρVt,c > v/4.

Then, Vt,c > v/(4ρ) and therefore (1−ρ)(v−Vt,c) > v/4 would imply that (1−ρ)(v−v/(4ρ)) > v/4,

i.e., 0 < (1 − ρ)(4ρ − 1) − ρ = −(2ρ − 1)2, which is a contradiction. Therefore, we have either

pc(1−pc) ≤ v/4 or qc(1−qc) ≤ v/4, and since these two quantities never exceed 1/4, the bound (21)

follows. If Sb,c and St,c are the same subsquare, the variance of δj(`, i) in this subsquare cannot

exceed 1/4.

If other subsquares intersect the histogram in column c, between Sb,c and St,c, then in each of

these subsquares the histogram variation is at least n−1/2 and the variance of the corresponding

δj(`, i) is at most 1/4. By adding the above inequalities over all the columns, we obtain that the

sum (over i) of variances of all Bernoulli variables δj(`, i) is bounded by (Λj + 1)n1/2/4.

Since these δj(`, i)’s are pairwise independent across the different values of i, we obtain

Var
[
F̂j(`)− F̃j(`)

]
=

n−1∑
i=0

Var[δj(`, i)/n] ≤ n1/2(Λj + 1)/(4n2) = (Λj + 1)n−3/2/4,

which proves (19).

We now prove (20) by induction on j. It obviously holds for j = 0, because F̂0 = F0. Suppose

it holds for j − 1, for all `. Observe that from the proof of Proposition 1, E[F̂j(x)] = P [Xj ≤ x] =

18

Fj(x), so E[∆j(x)] = 0. Then,

E[∆j−1(x)∆j−1(y)] = Cov[∆j−1(x), ∆j−1(y)] ≤ sup
`∈R

Var[∆j−1(`)] ≤ Γj

for all states x, y. Therefore, using (14) for the first equality and assuming that we can interchange

the expectation and integral in the third equality,

E[(F̃j(`)− Fj(`))2]

= E

[(∫ ∞

−∞
(F̂j−1(x)− Fj−1(x))dFj(` | x)

)2
]

= E

[∫ ∞

−∞

∫ ∞

−∞
(∆j−1(x)∆j−1(y))dFj(` | x)dFj(` | y)

]
=

∫ ∞

−∞

∫ ∞

−∞
E[∆j−1(x)∆j−1(y)]dFj(` | x)dFj(` | y)

=
∫ ∞

−∞

∫ ∞

−∞
ΓjdFj(` | x)dFj(` | y)

= Λ2
j (`)Γj .

Combining this with (19) and (13), and observing that F̂j(`)− F̃j(`) has mean 0 and is uncorrelated

with F̃j(`)− Fj(`), we obtain that

E[(F̂j(`)− Fj(`))2] = Var[(F̂j(`)− Fj(`))2]

= Var[(F̂j(`)− Fj(`))2] + Var[(F̃j(`)− Fj(`))2]

= E[(F̂j(`)− Fj(`))2] + E[(F̃j(`)− Fj(`))2]

≤ Λ2
j (`)Γj−1 + (Λj + 1)n−3/2/4 ≤ Γj

and this completes the induction. To prove the last part, we have

E

∣∣∣∣∣ 1n
n−1∑
i=0

cj(Xi,j)− E[cj(Xj)]

∣∣∣∣∣
2

= E

[∣∣∣∣∫ ∞

−∞
cj(`)dF̂j(`)−

∫ ∞

−∞
cj(`)dFj(`)

∣∣∣∣2
]

= E

[∣∣∣∣∫ ∞

−∞
(F̂j(`)− Fj(`))dcj(`)

∣∣∣∣2
]

≤
∫ ∞

−∞

∫ ∞

−∞
E(∆j(x)∆j(y))|dcj(x)||dcj(y)|

≤
∫ ∞

−∞

∫ ∞

−∞
Γj |dcj(x)||dcj(y)|

≤ (V (cj))2Γj .

19

�

We thus have a O(n−3/2) convergence rate for the variance of the cost at step j if the chain is

one-dimensional, d = 1, the Λj ’s are bounded, and the cost function has bounded variation. When

the chain is stochastically increasing, we have Λj ≤ 1 for all j and the variance bound becomes

(n−3/2/2)j(V (cj))2.

This could be generalized to higher-dimensional settings. For this, we need a counterpart of

Lemma 4. Here we just sketch how this can be done for d = 2 for a stochastically increasing

Markov chain, so that we have a two-dimensional increasing histogram in the unit cube. Partition

the cube into n subcubes by partitioning each axis into n1/3 equal parts (assuming that n1/3 is an

integer). The histogram boundary is now a surface. If we fix one of the two horizontal coordinates

to a multiple of n−1/3, this determines a vertical plane and the intersection of this plane with the

histogram boundary can be covered by at most 2n1/3 subcubes in a similar manner as in the proof

of Lemma 4. We can do this for each multiple of n−1/3, and repeat in each direction. We find

that the histogram boundary can be covered by at most Kn2/3 subcubes for some constant K. In

general, for a d + 1-dimensional cube, we conjecture that the histogram boundary can be covered

by Kn−d/(d+1) subcubes for some constant K that may depend on d but not on n. This can be

turned into a variance bound of O(n2−d/(d+1)) = O(n1+1/(d+1)).

The result could also be generalized to the case where cj has infinite variation (e.g., unbounded

state spaces and cost functions) if we assume that large-variation areas have low probability.

In our numerical experiments of Section 4, instead of generating the points independently

in the different squares as in the assumptions of Proposition 9, we will generate them according

to RQMC schemes that provide more uniformity, with the aim of inducing a larger amount of

negative dependence (i.e., more variance reduction) than with straightforward stratification. Some

of these RQMC schemes (e.g., the two-dimensional Sobol’ nets) have one point per subsquare as

in Proposition 9, but none of them really satisfies the assumptions of Proposition 9 because the

locations of the points in two different squares are not independent. These RQMC schemes turn

out to work very well in practice, but so far we have no counterpart of Proposition 9 for them.

20

4 A Numerical Illustration

4.1 An M/M/1 Queue with d = 1

Consider a single-server queue with i.i.d. exponential interarrival times with mean 1 and i.i.d.

exponential service times with mean ρ < 1. This ρ is also the utilization factor of the server. We

want to estimate the expected average waiting time of the first t customers, denoted µ. This µ

could be computed numerically without simulation; we just use this simple academic example to

illustrate our method.

Let Wj denote the waiting time of customer j in this system, where the first customer (who

arrives to the empty system) has number 0. These Wj ’s satisfy the Lindley recurrence: W0 = 0

and Wj = max(0, Wj−1 + Sj−1 −Aj) for j ≥ 1. We estimate µ by the sample average Y = (W0 +

· · ·+Wt−1)/t. To compute Y , we need to generate the 2(t−1) random variates S0, A1, . . . , St−1, At.

This estimator Y is unbounded (so the Koksma-Hlawka inequality gives an infinite bound for it),

but it has bounded variance.

We consider a Markov chain that moves by one step each time one of these random variates is

generated. That is, X0 = W0, X1 = W0 + S0, X2 = W1, X3 = W1 + S1, and so on. In this case,

d = 1 and s = 2(t − 1). Later, we will also consider the case where the chain moves by one step

every d/2 customers (where d is even), so Xj = Wjd/2 and s = (t− 1)/d. In all cases, this Markov

chain is stochastically increasing.

We tried both classical RQMC and array-RQMC for this example, with various possibilities

for the point set Pn. Here we report some results with t = 100. Table 1 gives the estimated variance

reduction factors compared with standard MC, i.e., the empirical variance per observation for the

MC estimator divided by that of the method considered, for some RQMC methods. All values

are rounded to the nearest integer. For the RQMC methods, the sample variance of m = 100

independent copies of the average Ȳn is multiplied by n to estimate the variance per observation,

i.e., per simulated copy of the Markov chain. The MC variance was estimated by making 100× 218

independent simulation runs. The simulations were performed in Java, using the SSJ simulation

21

library (L’Ecuyer, 2004b).

The values of µ and of the MC variance per run, σ2, are µ = 0.04922 and σ2 = 0.0005393 for

ρ = 0.2, µ = 0.48000 and σ2 = 0.06307 for ρ = 0.5, and µ = 2.48004 and σ2 = 3.1544 for ρ = 0.8.

These numbers are accurate (roughly) up to the given digits.

Table 1: Empirical variance reduction factors of RQMC with respect to MC, for the average waiting

time of 100 customers, with n ≈ 2k points.

ρ k = 10 k = 12 k = 14 k = 16 k = 18 k = 20

0.2 Classical-Korobov-Baker 5 8 15 16 59 117

Classical-Sobol 1 1 3 1 13 28

Array-Korobov 18 55 49 292 850 2169

Array-Korobov-Baker 43 159 306 991 3168 10590

Array-Sobol 87 282 836 3705 10640 47850

Array-Sobol-NoGray 46 112 276 874 2914 7429

0.5 Classical-Korobov-Baker 10 7 13 6 14 14

Classical-Sobol 2 1 4 5 9 10

Array-Korobov 14 46 33 231 686 2034

Array-Korobov-Baker 44 200 241 1155 3540 15650

Array-Sobol 123 504 1083 5651 13830 55160

Array-Sobol-NoGray 55 130 302 1188 3507 11260

0.8 Classical-Korobov-Baker 11 2 15 17 21 26

Classical-Sobol 3 2 4 6 10 11

Array-Korobov 15 85 33 337 727 5119

Array-Korobov-Baker 70 463 287 2225 10080 75920

Array-Sobol 370 1281 3240 19730 57290 233100

Array-Sobol-NoGray 117 288 996 4580 13210 48660

If the required CPU time to simulate the mn copies of the chain with RQMC is approximately α

22

times that required to simulate mn independent copies, and if the variance reduction factor is γ, we

can say that MC requires γ/α times more CPU time to achieve a given precision for the estimator

of µ. For this example, we have α ≈ 2 for array-RQMC (due to the overhead of maintaining several

copies of the chain in parallel and sorting them) and α ≈ 1 for classical RQMC.

The table contains results for the classical RQMC approach with a 2(t−1)-dimensional Korobov

lattice rule using parameters taken from Table 1 of L’Ecuyer and Lemieux (2000) (where n is the

largest prime smaller than 2k), to which we applied a random shift modulo 1 followed by the baker’s

transformation (Hickernell, 2002), denoted Classical-Korobov-Baker in the table, and 2(t − 1)-

dimensional Sobol nets with n = 2k randomized by a left (upper triangular) matrix scrambling

followed by a random digital shift (L’Ecuyer and Lemieux, 2002; Owen, 2003), denoted Classical-

Sobol.

For array-RQMC, we give result for the d-dimensional RQMC point set Pn taken as (a) a

(d+1)-dimensional Korobov lattice rule with its first coordinate skipped, randomized by a random

shift modulo 1 (denoted Array-Korobov); (b) the same Korobov rule with the random shift followed

by baker’s transformation (Array-Korobov-Baker); (c) the first n points of a Sobol sequence ran-

domized by a left (upper triangular) matrix scrambling followed by a random digital shift (L’Ecuyer

and Lemieux, 2002; Owen, 2003), where the points are enumerated by order of their Gray code

(Array-Sobol); and (d) the same Pn as in (c) but with the points enumerated in their natural order

(Array-Sobol-NoGray).

For Array-Korobov, the multiplier a of the two-dimensional Korobov lattice rule was selected

so that n is prime and a/n is close to the golden ratio. With this choice of a, the rule performs

quite well in the two-dimensional spectral test. The points of the Korobov lattice are enumerated

by order of the (skipped) first coordinate, so P ′
n becomes the original Korobov lattice point set.

For instance, if d = 1, the points of Pn before the shift are 0, a, 2a, . . . , (n− 1)a in that order. The

points of the Sobol net are often enumerated by order of their Gray code because this is a bit faster

than enumerating them in their natural order (see, e.g., L’Ecuyer, 2004b). Enumerating the points

of Pn by their Gray code is equivalent to applying a permutation to the second coordinate of the

points of P ′
n, i.e., it performs an additional scrambling for this coordinate.

23

The array-RQMC methods clearly outperform both MC and classical RQMC in this example,

even though classical RQMC is already significantly more efficient than MC (up to 100 times more

efficient in one case). The improvement factor is larger when the queue has more traffic (i.e., for

larger ρ, which is also when the variance is larger) and larger for the Sobol nets than for the Korobov

rules. For the Korobov rules, the baker transform really makes a big difference. For the Sobol’

nets, the results are better when the points are enumerated in Gray code order. The corresponding

scrambling appears helpful, yet we do not have a clear explanation of why.

For classical RQMC, the improvement is much better for the Korobov rules with the baker

transform than for the Sobol nets. Without the baker transform (not show here) the Korobov rules

are just slightly better than the Sobol nets.

4.2 Increasing d

Table 2 shows the behavior of the estimated variance reduction factors when d increases, with

n ≈ 218. Here, at each step of the Markov chain, we generate d random variates to compute the

waiting times of d/2 customers (d = 1 represents the case examined in the previous subsection).

Note that for “Classical-Korobov,” the exact variance reduction factor does not depend on d; the

variation observed in the table is only statistical noise. It gives an idea of the precision of our

variance-improvement estimators. For Array-Sobol, the variance reduction factors decrease with

d, but not so fast. Moreover, the “NoGray” version becomes comparable to the regular one for

d > 2. The gains are still substantial even for d = 8, where the RQMC method approximates

9-dimensional integrals at each step of the Markov chain.

4.3 Random dimension: a Regenerative System

So far in this example, s was fixed at 2(t− 1). We now modify the example so that s = ∞. Recall

that the M/M/1 queue is a regenerative system that regenerates whenever a customer arrives to an

empty system. Each regenerative cycle contains a random and unbounded number of customers.

Suppose we want to estimate µ = E[Y], where we take the following two possibilities for Y : (i) the

24

Table 2: Estimated variance reduction factors of d-dimensional classical RQMC and array-RQMC

with respect to MC, for selected values of d and n ≈ 218.

d = 1 d = 2 d = 4 d = 8

0.2 Classical-Korobov-Baker 59 70 73 78

Classical-Sobol 13 13 12 12

Array-Korobov-Baker 3168 571 283 137

Array-Sobol 10640 4329 2247 352

Array-Sobol-NoGray 2914 5294 2476 403

0.5 Classical-Korobov-Baker 14 22 16 18

Classical-Sobol 9 6 9 7

Array-Korobov-Baker 3540 918 152 150

Array-Sobol 13830 8067 5566 667

Array-Sobol-NoGray 3507 6206 5205 702

0.8 Classical-Korobov-Baker 21 22 20 28

Classical-Sobol 10 12 14 10

Array-Korobov-Baker 10080 2296 1074 597

Array-Sobol 57290 33360 22550 2515

Array-Sobol-NoGray 13210 23850 15570 2117

25

total waiting time of all customers in a regenerative cycle and (ii) the number of customers in a cycle

whose waiting time exceeds c, for some constant c > 0. Note that changing the uniforms slightly

may split or merge regenerative cycles, making Y highly discontinuous in both cases. Moreover, in

the second case, Y is integer-valued, so it is not as smooth as in the first case. For our numerical

illustration of case (ii), we take c = 1. The exact values of µ for case (i) are 0.0625, 1, and 16 for

ρ = 0.2, 0.5 and 0.8. For case (ii), they are approximately 0.00458, 0.368, and 3.115 for ρ = 0.2,

0.5, and 0.8.

Table 3: Estimated variance reduction factors of classical RQMC and array-RQMC with respect

to MC, for the regenerative example, case (i).

ρ k = 10 k = 12 k = 14 k = 16 k = 18 k = 20

0.2 Classical-Korobov-Baker 3 5 6 5 14 24

Array-Korobov-Baker 13 28 49 116 289 1093

Array-Sobol 7 21 46 99 239 756

0.5 Classical-Korobov-Baker 2 3 3 1 6 5

Array-Korobov-Baker 11 16 37 79 159 438

Array-Sobol 6 11 24 72 228 469

0.8 Classical-Korobov-Baker 1 1 2 1 2 2

Array-Korobov-Baker 6 12 22 36 151 237

Array-Sobol 3 5 19 32 92 225

Tables 3 and 4 give the estimated variance reduction factors of classical RQMC and array-

RQMC compared with standard MC, again with m = 100. The improvement factors are not as

large as in the two previous tables, but they are still significant, increase with n, and are much

larger for the array versions than for the classical ones. The gain decreases with ρ in case (i) and

increases with ρ in case (ii). Note that in case (ii), “Y > 0” is a rare event when ρ is very small

so in that case something else (such as importance sampling) would have to be done to reduce the

variance. For the classical methods, we need infinite-dimensional RQMC point sets, because the

number of steps of the chain is unbounded. The Sobol’ nets are not infinite-dimensional, but the

26

Table 4: Estimated variance reduction factors of classical RQMC and array-RQMC with respect

to MC, for the regenerative example, case (ii).

ρ k = 10 k = 12 k = 14 k = 16 k = 18 k = 20

0.2 Classical-Korobov-Baker 1 1 2 2 3 2

Array-Korobov-Baker 3 5 15 22 72 113

Array-Sobol 2 5 9 23 46 108

0.5 Classical-Korobov-Baker 3 3 4 2 7 6

Array-Korobov-Baker 22 35 146 253 540 1655

Array-Sobol 13 33 85 245 645 1847

0.8 Classical-Korobov-Baker 2 1 3 2 3 3

Array-Korobov-Baker 16 40 100 76 442 997

Array-Sobol 10 27 81 198 629 1844

Korobov lattice rules have this property. The successive coordinates of each of their points can be

generated by a linear congruential generator as explained in L’Ecuyer and Lemieux (2000).

4.4 Pricing a Bermudan-Asian option

We consider the pricing of a Bermudan-Asian option on a single asset whose value S(τ) at time τ

obeys a geometric Brownian motion:

dS(τ) = rS(τ)dτ + σS(τ)dB(τ),

where r is the risk-free interest rate, σ is the (risk-neutral) volatility parameter, and B(·) is a

standard Brownian motion. The option’s value can be written as

µ = E[e−rT Ca(T) | S(0)]

where

Ca(T) = max

0,

1
s

s∑
j=1

S(τj)

−K

27

and 0 < τ1 < · · · < τs = T are the discrete observation times. See, e.g., Hull (2000) and Glasserman

(2004) for further details.

We have

S(τj) = S(τj−1) exp[(r − σ2/2)(τj − τj−1) + σ(τj − τj−1)1/2Φ−1(Uj)] (22)

for j = 1, . . . , s, where the Uj ’s are independent U(0, 1) random variables and Φ is the standard nor-

mal distribution function. To get an unbiased estimator of µ it suffices to generate S(τ1), . . . , S(τs)

via (22), with s i.i.d. U(0, 1) random variates, and compute the estimator X = e−rT Ca(T).

To apply the array-RQMC method, we define the state of the chain at step j as the two-

dimensional vector Xj = (S(τj), S̄j), where S̄j = (S(τ1) + · · · + S(τj))/j. We order these states

simply by increasing order of their value of S(τj) (there are other possibilities, perhaps better ones).

For a numerical illustration, let S(0) = 100, K = 90, T = 120/365 (in years), δ = 1/365,

t1 = T − s, r = log 1.09, σ = 0.2, and s = 10, 60, and 120. Table 5 gives the estimated variance

reduction factors of RQMC compared with standard MC. The classical RQMC methods uses the

straightforward simulation approach described above, with s-dimensional randomized point sets

defined as in the previous examples. Efficiency can be further improved by combining RQMC with

bridge sampling and other variance-reduction techniques such as control variates and importance

sampling (Caflisch and Moskowitz, 1995; Glasserman, 2004; L’Ecuyer and Lemieux, 2000; L’Ecuyer,

2004a) but we do not go in that direction here.

Here, classical RQMC is already very effective when s is small, and array-RQMC is not really

better. For larger s, however, array-RQMC eventually provides larger variance-reduction factors.

On the other hand, it is disappointing to see that these factors eventually stabilize when we increase

n. This suggests a O(1/n) asymptotic rate of convergence of the variance for this particular

implementation and choice of sorting criterion. Another important point to notice is that one

again, the baker transformation applied on top of the Korobov rules really helps.

28

Table 5: Estimated variance reduction factors of classical RQMC and array-RQMC with respect

to MC, for the Asian option.

s k = 10 k = 12 k = 14 k = 16 k = 18 k = 20

10 Classical-Korobov 188 594 2601 5505 18050 11040

Classical-Korobov-Baker 2629 10600 5104 83450 27560 93620

Classical-Sobol 4844 11460 28740 46020 142900 222800

Array-Korobov-Baker 4783 13280 23960 45990 36670 39950

Array-Sobol 5080 13030 37460 38320 36360 32430

60 Classical-Korobov 81 17 352 406 552 497

Classical-Korobov-Baker 481 567 919 610 1362 1745

Classical-Sobol 282 488 907 787 1654 2413

Array-Korobov-Baker 1187 1742 1218 2231 1680 1998

Array-Sobol 1234 1742 2050 2203 2189 1866

120 Classical-Korobov 73 27 152 209 252 276

Classical-Korobov-Baker 244 380 452 407 581 498

Classical-Sobol 68 92 234 253 531 410

Array-Korobov-Baker 816 1263 1355 1736 1456 1635

Array-Sobol 1423 1485 1260 1390 1333 1477

240 Classical-Korobov 30 9 93 116 95 148

Classical-Korobov-Baker 76 167 233 303 375 319

Classical-Sobol 29 32 54 69 151 217

Array-Korobov-Baker 445 703 375 758 773 601

Array-Sobol 744 769 670 725 702 667

29

4.5 Estimating a small ruin probability with importance sampling and array-

RQMC

A (simplified) insurance company receives premiums at constant rate c > 0 and claims according

to a Poisson process {N(t), t ≥ 0} with rate λ > 0. The claim sizes Cj , j ≥ 1, are i.i.d. random

variables with density h. The reserve (amount of money in hand) at time t is

R(t) = R(0) + ct−
N(t)∑
j=1

Cj ,

where R(0) is the initial reserve. We want to estimate the ruin probability, i.e., the probability µ

that R(t) eventually becomes negative.

Note that ruin can occur only at the time of a claim. The reserve just after claim j is

Xj = Xj−1 + Ajc− Cj , j ≥ 1,

where X0 = R(0) and Aj is the time between claims j − 1 and j. The process {Xj , j ≥ 0} is a

random walk. This process cannot be simulated directly to estimate the ruin probability because:

(1) we cannot be 100% sure that ruin does not occur if we simulate only for a finite time and (2) in

practice ruin occurs very rarely. We can get around these difficulties by using importance sampling

(IS) with exponential twisting as follows (Asmussen, 1985). Assuming that h has a finite moment

generating function Mh around 0, we replace the density h(x) by

hθ(x) = h(x)eθx/Mh(θ)

and increase the rate λ of the Poisson process to

λθ = λ + θc,

where θ is the largest solution to the Lundberg equation Mh(θ) = (λ+θc)/λ. Under this IS scheme,

ruin occurs with probability 1 and the (unbiased) estimator of µ is

eθ(Xτ−X0)

where τ = inf{j : Xj < 0}.

30

Table 6: Estimated variance reduction factors for the ruin probability example.

c k = 10 k = 12 k = 14 k = 16 k = 18 k = 20

10 Classical-Korobov-Baker 1 1 1 1 1 1

Array-Korobov-Baker 3 3 7 3 15 27

Array-Sobol 2 2 6 10 19 45

5 Classical-Korobov-Baker 1 1 1 1 2 1

Array-Korobov-Baker 3 4 10 5 21 37

Array-Sobol 2 4 8 13 33 73

3 Classical-Korobov-Baker 1 1 1 1 1 1

Array-Korobov-Baker 2 4 8 7 24 38

Array-Sobol 2 5 7 17 30 49

We are interested in seeing if a combination of IS with array-RQMC is more efficient than IS

alone. Since the function

f(u) = eθ(Xτ−X0)

is sawtooth-like (not smooth at all) with respect to each coordinate of u, we do not expect RQMC

to perform well a priori. For a numerical experiment, we take λ = 1, exponential claim sizes with

mean 1/β = 2, and R(0) = 200. We use d = 1, i.e., one step of the chain each time a uniform

random number is generated. The number of steps before ruin occurs is random.

Table 6 gives the estimated variance reduction factors of classical RQMC and array-RQMC

compared with MC, both with IS, for c = 3, 5, and 10. For classical RQMC we need an infinite-

dimensional rule and we use Korobov as in Section 4.3. The exact ruin probability µ is approxi-

mately µ = 2.2× 10−15 for c = 3, µ = 3.5× 10−27 for c = 5, and µ = 3.6× 10−36 for c = 10. The

gains are not as spectacular as for the previous examples, but they are nevertheless significant.

31

4.6 Conclusion

We have proposed a new RQMC method for Markov chains, proved some results on its convergence,

and tested it numerically on a few examples. The new method provides large efficiency gains

compared with standard MC in all the examples we tried and performs much better than classical

RQMC in the examples where the Markov chain has a one-dimensional state space. Generally

speaking, the performance of the array-RQMC method tends to degrade when the integrand has

higher variability, or when the dimension of the state space becomes larger than 1 and there is no

obvious “natural order” for the states. But even in these cases, there can be significant variance

reductions compared with standard MC, and often compared with classical RQMC as well.

Our paper also provides novel empirical evidence of the effectiveness of applying the baker

transformation over a randomly shifted lattice rule, an idea that was studied theoretically by

Hickernell (2002).

Obtaining better convergence bounds for the variance is a goal that would certainly deserve

further work. From the practical viewpoint, an interesting challenge would be to find good ways of

ordering the states for specific classes of problems where the Markov chain has a multidimensional

state space. Our on-going and future work also includes studying the application of array-RQMC

to other settings that fit a general Markov chain framework, such as Markov Chain Monte Carlo

methods and stochastic approximation algorithms, for example.

5 Acknowledgments

The work of the first author has been supported by NSERC-Canada grant No. ODGP0110050,

NATEQ-Québec grant No. 02ER3218, and a Canada Research Chair. The work of the third

author has been supported by EuroNGI Network of Excellence and SurePath ACI sécurité project.

A (short) preliminary version of this paper is due to appear in the Proceedings of the MCQMC’2004

Conference (L’Ecuyer et al., 2005). Richard Simard helped to prepare the software for the numerical

experiments.

32

References

Asmussen, S. (1985). Conjugate processes and the simulation of ruin problems. Stochastic Processes

and their Applications, 20:213–229.

Ben-Ameur, H., L’Ecuyer, P., and Lemieux, C. (2004). Combination of general antithetic transfor-

mations and control variables. Mathematics of Operations Research, 29(4):946–960.

Caflisch, R. E. and Moskowitz, B. (1995). Modified Monte Carlo methods using quasi-random

sequences. In Niederreiter, H. and Shiue, P. J.-S., editors, Monte Carlo and Quasi-Monte Carlo

Methods in Scientific Computing, number 106 in Lecture Notes in Statistics, pages 1–16, New

York. Springer-Verlag.

Glasserman, P. (2004). Monte Carlo Methods in Financial Engineering. Springer-Verlag, New

York.

Hickernell, F. J. (2002). Obtaining o(n−2+ε) convergence for lattice quadrature rules. In Fang, K.-

T., Hickernell, F. J., and Niederreiter, H., editors, Monte Carlo and Quasi-Monte Carlo Methods

2000, pages 274–289, Berlin. Springer-Verlag.

Hull, J. (2000). Options, Futures, and Other Derivative Securities. Prentice-Hall, Englewood-Cliff,

N.J., fourth edition.

Lécot, C. (1996). Error Bound for Quasi-Monte Carlo Integration with Nets. Mathematics of

Computation, 65(213):179–187.

Lécot, C. and Ogawa, S. (2002). Quasirandom walks methods. In Fang, K.-T., Hickernell, F. J.,

and Niederreiter, H., editors, Monte Carlo and Quasi-Monte Carlo Methods 2000, pages 63–85,

Berlin. Springer-Verlag.

Lécot, C. and Tuffin, B. (2004). Quasi-Monte Carlo methods for estimating transient measures of

discrete time Markov chains. In Niederreiter, H., editor, Monte Carlo and Quasi-Monte Carlo

Methods 2002, pages 329–343, Berlin. Springer-Verlag.

33

L’Ecuyer, P. (2004a). Quasi-Monte Carlo methods in finance. In Ingalls, R. G., Rossetti, M. D.,

Smith, J. S., and Peters, B. A., editors, Proceedings of the 2004 Winter Simulation Conference,

Piscataway, New Jersey. IEEE Press.

L’Ecuyer, P. (2004b). SSJ: A Java Library for Stochastic Simulation. Software user’s guide,

Available at http://www.iro.umontreal.ca/∼lecuyer.

L’Ecuyer, P., Lécot, C., and Tuffin, B. (2005). Randomized quasi-Monte Carlo simulation of Markov

chains with an ordered state space. In Niederreiter, H. and Talay, D., editors, Monte Carlo and

Quasi-Monte Carlo Methods 2004. To appear.

L’Ecuyer, P. and Lemieux, C. (2000). Variance reduction via lattice rules. Management Science,

46(9):1214–1235.

L’Ecuyer, P. and Lemieux, C. (2002). Recent advances in randomized quasi-Monte Carlo methods.

In Dror, M., L’Ecuyer, P., and Szidarovszky, F., editors, Modeling Uncertainty: An Examination

of Stochastic Theory, Methods, and Applications, pages 419–474. Kluwer Academic Publishers,

Boston.

Niederreiter, H. (1992). Random Number Generation and Quasi-Monte Carlo Methods, volume 63

of SIAM CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia.

Owen, A. B. (1998). Latin supercube sampling for very high-dimensional simulations. ACM Trans-

actions on Modeling and Computer Simulation, 8(1):71–102.

Owen, A. B. (2003). Variance with alternative scramblings of digital nets. ACM Transactions on

Modeling and Computer Simulation, 13(4):363–378.

Owen, A. B. (2004). Multidimensional variation for quasi-Monte Carlo. Manuscript.

Wilson, J. R. (1983). Antithetic sampling with multivariate inputs. American Journal of Mathe-

matical and Management Sciences, 3:121–144.

34

