
An open tool to compute stochastic bounds on steady-state distributions and
rewards

Jean-Michel Fourneau, Mathieu Le Coz, Nihal Pekergin and Franck Quessette

PRiSM Laboratory, Versailles University
45, avenue des États-Unis, 78000 Versailles, FRANCE

Email: {jmf,mlc,nih,qst}@prism.uvsq.fr

Abstract

We present X-Bounds, a new tool to implement a method-
ology based on stochastic ordering, algorithmic derivation
of simpler Markov chains and numerical analysis of these
chains. The performance indices defined by reward func-
tions are stochastically bounded by reward functions com-
puted on much simpler or smaller Markov chains obtained
after aggregation or simplification. This leads to an impor-
tant reduction on numerical complexity. Typically, chains
are ten times smaller and the accuracy may be good enough.

1. Introduction and Motivation
Since Plateau’s pioneering work on tensorial represen-

tation of Markov chains [14], we know how to design and
store huge states spaces and transition sets. Many high level
formalisms such as Petri nets and Stochastic Process Alge-
bra are able now to store the transition matrix P of a chain
in a tensor form [7, 12]:

P =
∑

i

⊗

j

M j
i

However, this method does not help enough during the nu-
merical resolution of the steady-state. More precisely, we
are interested in performance indices or rewards R defined
as summation of elementary reward functions r(i) on the
steady-state distribution π (i.e. R =

∑

i r(i)π(i)) and we
do not try to compute transient measures. Important perfor-
mance indices such as mean population size, average wait-
ing time or loss probabilities may be computed that way.
Thus the numerical computation is mainly the computa-
tion of the steady-state distribution and the summation of
the elementary rewards r(i)π(i) to obtain R. π is defined
by π = πP . This first step is in general the most diffi-
cult because of the memory space and time requirements
(see Stewart’s book [15] for an overview of usual numerical
techniques for Markov chains).

We advocate algorithmic bounds as an interesting alter-
native to computation of the exact steady-state distribution
when it is sufficient to satisfy the requirements of the Qual-
ity of Service (QoS) we expect. Here, we present a tool and
some algorithms to check several algorithmic bounds based
on stochastic ordering of Markov chains. The approach is
quite recent as stochastic bounds are usually obtained by
sample-path proofs rather than by algorithmic derivation
(see [13] for an example on Fair Queueing). The algo-
rithmic aspects of stochastic comparison of Markov chains
have been surveyed recently [9] and the tool we present im-
plements many of the algorithms on this new topic. For
some examples, we have obtained very good results, the
state space is reduced by several order of magnitude (from
several millions to several tens of thousands) and the bounds
are still accurate. The availability of this tool will help to
compare the accuracy of bounding techniques. The tool is
open to help the modification of algorithms or heuristics and
the source will be available.

The paper is organized as follows: in section 2, we
briefly introduce the properties we need and the basic al-
gorithms and results already obtained. Then section 3 is
devoted to the presentation of the tool, the states and transi-
tion generation and the reordering. Finally in section 4, we
present the bounding methods already proved [2, 8, 9] and
an example.

2. A Brief Overview of Stochastic Bounds and
Algorithms

We restrict ourselves to Discrete Time Markov Chains
(DTMC) with finite state space E = {1, 2, . . . , n}
but continuous-time models can be considered after uni-
formization. n and m will be respectively the number of
states and the number of non-zero transitions. Pi,∗ will de-
note row i of matrix P .

Stoyan [16] defined the strong stochastic ordering (“st”-
ordering for short) by the set of non-decreasing functions.

Bounds on the distribution imply bounds on these perfor-
mance indices as well. Important performance indices such
as average population, loss rates or tail probabilities are non
decreasing functions. The second part of the definition 1 for
discrete random variables is much more convenient for an
algebraic formulation and an algorithmic setting.

Definition 1 Let X and Y be random variables taking val-
ues on a totally ordered space. Then X is said to be less
than Y in the strong stochastic sense, that is, X <st Y
iff E[f(X)] ≤ E[f(Y)] for all non decreasing functions f
whenever the expectations exist.

If X and Y take values on the finite state space {1, 2, . . . ,
n} with p and q as probability distribution vectors, then X
is said to be less than Y in the strong stochastic sense, that
is, X <st Y iff

∑n

j=k pj ≤
∑n

j=k qj for k = 1, 2, . . . , n.

Example 1 Let α = (0.1, 0.3, 0.4, 0.2) and β = (0.1, 0.1,
0.5, 0.3) two probability distribution vectors. We have
α <st β since:







0.2 ≤ 0.3
0.4 + 0.2 ≤ 0.5 + 0.3

0.3 + 0.4 + 0.2 ≤ 0.1 + 0.5 + 0.3

It is known for a long time that monotonicity [9]
and comparability of the transition probability matrices
yield sufficient conditions for the stochastic comparison
of Markov chains and their steady-state distributions. St-
monotonicity and st-comparability of matrices are com-
pletely characterized by linear algebraic constraints; this
fundamental result is the key of our algorithms. Assuming
that P is not st-monotone, we must find Q such that:

{ ∑n

k=j Pi,k ≤
∑n

k=j Qi,k ∀ i, j
∑n

k=j Qi,k ≤
∑n

k=j Qi+1,k ∀ i, j
(1)

The first equation states that P is stochastically lesser
than matrix Q, the second gives the condition for Q to be a
st-monotone matrix.

We will have πP <st πQ if the steady-state distributions
exist (see [8, 9] for the theoretical aspects). Vincent’s algo-
rithm [1] is the simplest solution: it replaces the inequalities
by equalities and computes Q with i in increasing order and
j in decreasing order. However, this algorithm has two im-
portant drawbacks: the result matrix may be reducible even
if matrix P is not. And the bounding matrix is in general as
difficult to solve as the original one.

We have proved several algorithms to cope with these
problems. First, Algorithm IMSUB fixes the irreducibility
problem (see [8] for a proof). It avoids to delete transitions
and it adds the sub-diagonal elements. Then, we use the
two sets of constraints of system (1) and add some struc-
tural properties of the chain to simplify the resolution. For
instance, Algorithm UHMSUB (see figure 1) provides an

upper bounding matrix which is Upper-Hessenberg (i.e. the
low triangle except the main sub-diagonal is zero). There-
fore the resolution by direct elimination is quite simple.

Example 2 Consider the following matrices:

P =
1

10
·











5 2 1 2 0
1 7 1 0 1
2 1 5 2 0
1 0 1 7 1
0 2 2 1 5











Q =
1

10
·











5 2 1 2 0
1 6 1 1 1
0 3 5 1 1
0 0 2 7 1
0 0 0 5 5











R =
1

10
·











5 2 1 2 0
1 6 1 1 1
2 0 6 2 0
0 0 2 7 1
0 0 0 5 5











S =
1

10
·











5 2 1 2 0
1 6 1 1 1
1 2 5 1 1
0 0 0 7 3
0 0 0 5 5











The following properties are easy to check:

• P <st Q and Q is st-monotone and Q is Upper-
Hessenberg

• P <st R but R is not st-monotone (see the second and
the third row of R).

• P <st S and S is st-monotone but S is reducible.

All the algorithms we have integrated into X-Bounds
are structure-oriented. They do not assume any particular
property or structure for the initial stochastic matrix but the
bounds have a structure which helps for the numerical res-
olution. Let us review the Upper-Hessenberg case.

In the algorithm description (see figure 1), for the sake of
simplicity, we use a full matrix representation for P and Q.
Of course, the programs use sparse matrix representations.
Note that due to the ordering of the indices, the summations
are already computed and stored when we need them. We
let them appear as summations to show the relations with
the set of inequalities (1).

The resolution by recursion for these matrices requires
O(m) operations [15]. The bounding algorithm is slightly
different of Algorithm IMSUB [8]. The last two instructions
create the Upper-Hessenberg structure.

We have also developed new techniques to improve the
accuracy of the bounds on the steady state π which are
based on some pre-processing of P [5] or polynomials of
P [4]. These transformations have no effect on the steady-
state distribution but they have a large influence on the
bounding algorithms. Thus, X-Bounds allows to build the
original matrix P or some simple polynomials of P .

3. The Tool

The program interface is divided in five columns (see
figure 2), each one representing a step of the resolution.

The first step is to obtain the states and transitions of
the chain from some specifications. Then the chain must

Figure 2. The X-Bounds Interface.

q1,n = p1,n
������

i = 1, 2, . . . , n � �
q1,i = p1,i

qi+1,n = max(qi,n, pi+1,n) ��	��
������
�����

i = 2, 3, . . . , n � ������
l = n − 1, n − 2, . . . , i � �
qi,l = max(

∑n

j=l
qi−1,j ,

∑n

j=l
pi,l) −

∑n

j=l+1
qi,j

�
��
(qi,l = 0) ����� (pi,l > 0) ����� (

∑n

j=l+1
qi,j < 1) ����� �

qi,l = ε × (1 −

∑n

j=l+1
qi,j)����
�
������
������

qi,i−1 = 1 −

∑n

j=i
qi,j�����

l = i − 2, i − 3, . . . , 1 � �
qi,l = 0����
�������	��
������

Figure 1. Algorithm UHMSUB: Construc-
tion of an irreducible Upper-Hessenberg st-
monotone upper bound.

be processed to satisfy the requirements of the bounding al-
gorithms which have been chosen. Typically, the transition
matrix is obtained and stored row by row while most of the
algorithms use ad-hoc storage (for instance, LIMSUB needs
a column by column storage, beginning with the rightmost
one). Finally the chain is solved and the rewards are com-
puted.

Generation of reachable states: The first step Models
Generators generates the matrix files from user defined C-
functions.

We proceed by a Breadth-First Search from a chosen ini-
tial state (see [10] for such a method for states generated
by a Petri net). Here the transitions are described by an
evolution equation based on states and events. The states
are described by a multidimensional vector, therefore they
are included into a Cartesian product. Each transition is
associated to an event. An event is described by a proba-
bility which may be state-dependent and by the transitions
it triggers for all the states. So, the user has to modify four
functions, written in C, to specify: the Cartesian product in-
cluding the states, the initial state to perform the visit, the
probability of a transition, and the evolution equation which

describes all the transitions. The functions are gathered into
a file “fun.c”. Once these functions have been provided,
the program is compiled to obtain a new stochastic matrix
generation tool which is stored in the model directory. It
is also possible to define (using a set of constants in a file
“const.h”) a polynomial Φ to compute Φ(P) during the gen-
eration rather than P .

Figure 3 depicts the generation algorithm. The sets S
and V and the set operations +, − and AddTransition
must me carefully implemented. The sets are represented
by queues, and the transitions are linked in an ordered list
as we assume that the matrix will be sparse. Another im-
plementation based on hash table will also be considered in
the near future.

S = {Initial State} �
V = ∅ ������! !"

S 6= ∅ #%$&('�)+*
s , - S �

S = S − {s} �. -�, /�, '10 , 2 * /�3 *	0 , 45/	6�7 &�89' -�4:, /9, 6;-<4��= $?> '�0 0�*A@+* -+/ e #B$CEDGF 8 61H ' H�, 0 , /JI�K *1L 49MN�O DGP @ 6 0 Q /�, 61-�KR4 L * MN�
S = S + {x} �SUT�T &�89' -<4:, /�, 61-�K O L C M<�V	W�XY= $�>Z[8 , / *�\ , 45/]6�7 &�89' -�4:, /�, 61-�4��V	W�X������^ !"

Figure 3. Algorithm GENERATION: to build
the transition matrix.

Reordering the states: The second step State Renum-
bering generates an additional file from user defined C-
functions and the output files of the first step. The files gen-
erated contain the matrix reordered and the partition of the
states.

One of the major assumptions of most algorithms is the
ordering of the states. First, the rewards must be a non de-
creasing function of the state-index. Furthermore, some al-
gorithms based on a partition of states assume that states
which belong to the same set have contiguous indices. The
accuracy of the bound is directly impacted by the order-
ing [6] due to the filling of the bounding matrix. Thus we

have to reorder the states of the matrix. Again, the order-
ing is defined by the user in a C function. This function
computes a new number for a state described by the com-
ponents in the Cartesian product. The numbers may be not
distinct to allow the description of sets of states with the
same value. The ordering is based on the natural ordering
on these values. The compatibility with the rewards is not
checked.

Bounding and Solving the Chain: The third step Bounds
Computation computes a stochastic bound and generates
new files describing the bounding matrix. The fourth step
Solver Algorithms implements classical solvers and outputs
the stationary distribution.

Several algorithms have been implemented: IMSUB,
UHMSUB (with Upper-Hessenberg structure), LIMSUB
(which builds a lumpable chain [8]), CCMSUB (a C-Class
matrix structure studied by some of us [3] with a closed
form steady-state solution which can be computed in O(n)
operations).

Remember that the bounds are based on simpler or
smaller chains. Smaller chains are obtained because the
bounding matrix is lumpable [8]. And they are solved us-
ing usual numerical algorithms. The ordinary lumpability
insures that we still have a Markov chain after aggregation
of macros-states. So the lumped model is easier to solve.
GTH, SOR and Gauss-Seidel methods have been imple-
mented. Simpler chains have the same state space but a
structure which allows a simple computation of π. Thus
they need ad-hoc algorithms. So we have developed solvers
for Upper-Hessenberg or C-Class matrices [3, 9].

Basic Tools: Finally, we also add some utility programs:
checking the matrix row sum, matrix transposition to use
the SOR or Gauss Seidel solvers, map of the matrix to show
the non zero elements, irreducibility checking.

The tool is open. It is sufficient to add a new program into
the Solvers or Bounds directories to make them available by
the interface. Of course the program must be consistent with
the file description for the transitions matrices. It is also
possible to compute the rewards. The user has to specify
the elementary rewards r(i) using a C function.

Since the aim is to deal with chains which are so large
that the transition matrix does not fit in memory, storage
and complexity issues are critical. The tool is based on
a JAVA interface which creates directory, stores data and
models files, and the functions relevant to the model. The
real operations are written in C, tailored by the user for the
models and compiled by the interface to obtain an efficient
implementation.

4. An Example

We present all the steps of the analysis of a real example.
We give the functions to describe the model, we define the
rewards and show some heuristics to justify the bounding
strategy. We present the numerical results and the compu-
tation times and compare with exact results for small prob-
lems.

4.1 The Problem

We analyze a finite buffer and a buffer policy which com-
bines the PushOut mechanism for the space management
and a Head Of Line service discipline. We assume that
there exist two types of packets with distinct loss rate re-
quirements. The high priority (type H) packets have pri-
ority for space but not for service. A low priority packet
(type L) which arrives in a full buffer is lost. If the buffer
is not full, both types of packets are accepted. The PushOut
mechanism specifies that when the buffer is full, an arriving
high priority packet pushes out of the buffer a low priority
one if there is any in the buffer; otherwise the high prior-
ity packet is lost. We assume that packet size and service
time are constant, so we have a discrete time model (this is
consistent with ATM cells [11]). We also assume that the
departure due to service completion always takes place just
before the arrivals. The arrivals follow a Batch Process. The
buffer size is B, the number of states is (B + 1)(B + 2)/2.
We are interested in the expected number of high priority
lost packets per slot. Clearly, we have to estimate only few
probabilities as the reward is the number of packets which
exceed the buffer size.

4.2 The Model and the Matrix

We use the following representation for the state space
(T, H) where T is the total number of packets, H is the
number of high priority packets. The states are ordered ac-
cording to a lexicographic non decreasing order. This rep-
resentation of states is unusual but it has good properties
which are shown in the following. To compute transitions
and rewards, we define the evolution C function (reported
in figure 4) and compile the generation program.

Let us now show the transition matrix. Assume that the
buffer size if 5 and the batch arrival size is between 0 and 3.
Let ai,j the probability that a batch is made of i packets of
type L and j of type H . If we order the states according to
the lexicographic ordering, we obtain the matrix P depicted
in figure 5. For the sake of readability we have replaced the
six last columns by some blocks which follow and with R3

entries: ∀i ∈ 1..5, R3[i, i] = R3[6, 5] = a1,0 + a2,0 + a3,0;
∀i ∈ 1..4, R3[i, i + 1] = a0,1 + a1,1 + a2,1; ∀i ∈ 1..3,
R3[i, i + 2] = a0,2 + a1,2; ∀i ∈ 1..3, R3[i, i + 3] = a0,3;

�`9aJb�c:�`�dfe�ghaJ`Jikj^d:`Ji�l�mfc;nod:`Ji�l�api9b:q:r�q5_:g;nsd5`Ji�ltmfu;nvd5`Ji�ltmfwhxy{z mUc|a:}Ug5~9q�api:�:e�gt}fg��5g�q1nvapi9b:q5r�q5_:g�a:}Ug5~9q�g:���JiA}:afghaJ`Ji]i:e5���9q5��m zz mUu|a:}Ug5~9q	`Je�g5�:e�g�}fg��5g�q	�Ji9b�wta:}]g5~9q]��q5�9�5��b m zz m]�:`f���9`Ji9qJi�gh}�`:��}fg9�5g�q]_��5�AaJ�J�hd5qUc��Jihb]u|m zd5`Ji�l��:�1ns�A�Anv�:�1no�A�A� z m �9xUg�`5g���d�i:e:���9q5�	`:���peA}fg�`f�hq:� m zz m �Jx�i:e5���9q5�	`��]�|�peA}Jg�`f�hq5�h} m z� i�g��:�5�:�haf_�q:q9}�jRapi9b�qJr�qJ_:g;n����:�1n(���A�Jx��z m]�:���s�5�:�haf_���d�}U`:���;���A���o�5�:�haf_���d�}�`:����m z
�:�	���A���	�1�aJ�kj c+� �:���5�hx y �:�	���A�va5�kj c+�R�p�:�:�5c+� �:�hx:x��A�f�A�A�!� z m��:~9`�a:}	api�}Jq5�:_ha:�Jq	m z
u+� �:�	��c+� �:�	�	�:���	�A��]�:�1� z m]�5�:�haf_���d�}�m zu+�R�p�	��c+�R�p�	�	�A��]�A�A�w+�R�p�	�	�1�sw+� �������1� z mU¡5eA}p~9`Je�g;n(w�qJ�9�5��bh}��Ji9b�d5`9}:}�m zaJ�kj u+� �:�	�]¢:eh�:�:q5���9aJ£:q9x y w+� �:�	��u+� �:�9 p¢�e9�:�:q5���9aJ£:q���u+� �:����¢�e9�:�:q5���9aJ£:q1�(�aJ�kj u+�R�p�	�]¢:eh�:�:q5���9aJ£:q9x y w+�R�p�	��u+�R�p�9 p¢�e9�:�:q5���9aJ£:q���u+�R�p����¢�e9�:�:q5���9aJ£:q1�(��

Figure 4. Evolution Function.

R3[4, 6] = a0,2 +a1,2 +a0,3; R3[5, 6] = R3[6, 6] = a0,1 +
a1,1 + a2,1 + a0,2 + a1,2 + a0,3 and other entries are zero.

A careful inspection shows that the 15 first rows of the
transition matrix are st-monotone. For a model of a larger
buffer, this property is still true for the states where the
buffer is not full. Let us now turn to the reward function.
Let 11{x} be an indicator function. The reward is the num-
ber of exceeding packet of type H . As the service comple-
tion occurs before the arrival, we first check if the packet in
service is a type H . Due to the HOL service discipline, this
is equal to 11{H>0}11{T=H}. Then we add the arrivals and
we compute the exceeding packets:

r(T, H) =
∑

i

∑

j

ai,j max(0, (H−11{H>0}11{T=H}+i+j−B))

Note that this function is not increasing. Indeed, assume
a maximal batch size of 3, r(B − 1, B − 1) = a0,3 and
r(B, 0) = 0 if B > 4. Therefore we define s an upper-
bound of r, easily obtained by induction s(1) = r(1) and
s(i) = max(s(i − 1), r(i)).

4.3 The Bound and the Results

We only present here the application of LIMSUB
algorithm which is based on a lumpable bound. The
key idea to shorten the state space is to avoid the states
with large numbers of low priority packets. So, we
bound the matrix with an ordinary lumpable matrix using
the following macro-states: let F be a parameter, we
aggregate in the macro-state (T, T − F) all the states
where the second component is smaller than T − F . If
H > T − F then the lumped state contains only one
state (T, H). For instance, consider a buffer of size 5, if
we assume that F = 2, the states (4, 0), (4, 1) and (4, 2)
are aggregated into one macro-state. Let us now present
some numerical results. First, we analyze a model with
a small buffer to check the accuracy of the bound. The
buffer size is 50. The batch size is between 0 and 3.
The batch distribution is, in lexicographic order (L,H),
(0.55, 0.1, 0.1, 0.05, 0.05, 0.05, 0.025, 0.025, 0.025, 0.025).

F Size NZE Reward
2 150 1,377 1.8 10−9

5 291 3,633 1.7 10−9

10 506 5,674 1.7 10−9

Exact Model 1,326 12,848 1.2 10−9

Where Size is the size of the matrix, NZE the number of
Non Zero Entries and Reward is the number of type H pack-
ets lost per slot (remind that here, the algorithm computes
an upper bound of the reward). Clearly the bounds are very
accurate. We have found several reasons for that property.
First the distribution is skewed, almost all the probability
mass is concentrated on the states with a small number of
packets. Moreover due to the ordering of the states the first
part of the initial matrix is already st-monotone. Thus we
only have a few modifications in the matrix.

Now we report the execution time to build the transition
matrix and the bound. We consider large buffers. We report
in table 6 the matrix sizes and Non Zero Entries. The times
were measured on an usual PC.

5 Conclusion
Stochastic and numerical bounds are promising tech-

niques for performance evaluation. The major drawback of
these methods is the lack of open tools to test algorithms and
check their accuracy. We have observed that these meth-
ods may be very accurate when the distribution is skewed
and when a large part of the initial matrix is already st-
monotone. We hope the availability of X-Bounds will help
to develop these techniques.

References

[1] O. Abu-Amsha and J.-M. Vincent. An algorithm to bound
functionals of markov chains with large state space. In 4th
INFORMS Conference on Telecommunications, Boca Raton,
Florida, 1998.

[2] M. Benmammoun, J.-M. Fourenau, N. Pekergin, and
A. Troubnikoff. An algorithmic and numerical approach to
bound the performance of high speed networks. In IEEE
Mascots, Fort Worth, USA, 2002.

[3] M. Benmammoun and N. Pekergin. Closed form stochas-
tic bounds on the stationary distribution of markov chains.
Probability in the Engineering and Informational Sciences,
(16):403–426, 2002.

[4] F. Boujdaine, T. Dayar, J.-M. Fourneau, N. Pekergin,
S. Saadi, and J. Vincent. A new proof of st-comparison for
polynomials of a stochastic matrix. In Submitted, 2003.

[5] T. Dayar, J.-M. Fourneau, and N. Pekergin. Transforming
stochastic matrices for stochastic comparison with the st-
order. RAIRO-RO, To appear, 2003.

[6] T. Dayar and N. Pekergin. Stochastic comparison, re-
orderings, and nearly completely decomposable markov
chains. In B. Plateau and W. Stewart, editors, Proceedings
of the International Conference on the Numerical Solution
of Markov Chains (NSMC’99), pages 228–246, 1999.

P =





































































a0,0 a1,0 a0,1 a2,0 a1,1 a0,2 a3,0 a2,1 a1,2 a0,3 0

a0,0 a1,0 a0,1 a2,0 a1,1 a0,2 a3,0 a2,1 a1,2 a0,3 0
a0,0 a1,0 a0,1 a2,0 a1,1 a0,2 a3,0 a2,1 a1,2 a0,3 0

a0,0 a1,0 a0,1 a2,0 a1,1 a0,2 a3,0 a2,1 a1,2 a0,3 0
a0,0 a1,0 a0,1 a2,0 a1,1 a0,2 a3,0 a2,1 a1,2 a0,3 0
a0,0 a1,0 a0,1 a2,0 a1,1 a0,2 a3,0 a2,1 a1,2 a0,3 0

a0,0 a1,0 a0,1 a2,0 a1,1 a0,2

a0,0 a1,0 a0,1 a2,0 a1,1 a0,2 R1

a0,0 a1,0 a0,1 a2,0 a1,1 a0,2

a0,0 a1,0 a0,1 a2,0 a1,1 a0,2

a0,0 a1,0 a0,1

a0,0 a1,0 a0,1

a0,0 a1,0 a0,1 R2

a0,0 a1,0 a0,1

a0,0 a1,0 a0,1

a0,0

a0,0

a0,0 R3

a0,0

a0,0

a0,0





































































R1 =







a3,0 a2,1 a1,2 a0,3

a3,0 a2,1 a1,2 a0,3

a3,0 a2,1 a1,2 a0,3

a3,0 a2,1 a1,2 a0,3






R2 =











a2,0+a3,0 a1,1+a2,1 a0,2+a1,2 a0,3

a2,0+a3,0 a1,1+a2,1 a0,2+a1,2 a0,3

a2,0+a3,0 a1,1+a2,1 a0,2+a1,2 a0,3

a2,0+a3,0 a1,1+a2,1 a0,2+a1,2+a0,3

a2,0+a3,0 a1,1+a2,1 a0,2+a1,2+a0,3











Figure 5. The example matrix.

B Size NZE Gener. F Bound Bound Reord. LIMSUB
Time (in s) Size NZE Time (in s) Time (in s)

500 125,751 1,253,498 4.8 s 10 5,456 61,924 6.6 s 14 s
500 125,751 1,253,498 4.8 s 20 10,311 120,079 6.6 s 34 s

1,000 501,501 5,006,998 19 s 10 10,956 124,424 27 s 84 s
1,000 501,501 5,006,998 19 s 20 20,811 242,579 27 s 167 s
2,000 2,003,001 20,013,998 53 s 10 21,956 249,424 105 s 568 s

Figure 6. Results.

[7] S. Donatelli. Superposed generalized stochastic petri nets:
definition and efficient solution. In Proc. 15th Int. Conf.
on Application and Theory of Petri Nets, Zaragoza, Spain,
1994.

[8] J.-M. Fourneau, M. Le Coz, and F. Quessette. Algorithms
for an irreducible and lumpable strong stochastic bound. In
Numerical Solution of Markov Chains, USA, 2003.

[9] J.-M. Fourneau and N. Pekergin. An algorithmic approach
to stochastic bounds. In LNCS 2459, Performance evalua-
tion of complex systems: Techniques and Tools, pages 64–
88, 2002.

[10] B. Haverkort, A. Bell, and H. Bohnenkamp. On the efficient
sequential and distributed generation of very large markov
chains from stochastic petri nets. In I. Press, editor, PNPM
99, pages 12–21, Spain, 1999.

[11] G. Hébuterne and A. Gravey. A space priority queueing
mechanism for multiplexing atm channels. ITC Specialist

Seminar, Computer Network and ISDN Systems, (V20):37–
43, 1990.

[12] J. Hillston and L. Kloul. An efficient kronecker representa-
tion for pepa models. In PAPM, Aachen Germany, 2001.

[13] N. Pekergin. Stochastic delay bounds on fair queueing algo-
rithms. In Proceedings of INFOCOM’99, pages 1212–1220,
New York, 1999.

[14] B. Plateau. On the stochastic structure of parallelism and
synchronization models for distributed algorithms. In Proc.
of the SIGMETRICS Conference, pages 147–154, Texas,
1985.

[15] W. Stewart. Introduction to the Numerical Solution of
Markov Chains. Princeton University Press, 1994.

[16] D. Stoyan. Comparison Methods for Queues and Other
Stochastic Models. Wiley, 1983.

