next up previous contents
Next: Perfect Simulation Up: Introduction Previous: Uniformization   Contents

Aliasing construction

To use Walker's algorithm, as described in [Wal74] and [Sch83], to simulate transitions of Markov chains, we must build aliasing arrays.
Consider a construction example, issued from [Mor02].


Example 2 (Aliasing precomputation)   Let $ X$ a random variable defined on the space states $ \dco 0..5\dcf$ by the probability distribution $ p=(p_i)_{0\leq i \leq 5}$ :

$\displaystyle p=(0.1,0.3,0.2,0.1,0.2,0.1)$


At the start of computation, we have respectively, "low" and "high" set :

$\displaystyle L=\{0,3,5\}$

and

$\displaystyle H=\{1,2,4\}$




Figure 1.1: Aliasing construction : initial step.
\begin{figure}\begin{center}
\input{alias.pstex_t}
\end{center} \end{figure}

Figure 1.2: Aliasing construction : first step.
\begin{figure}\begin{center}
\input{alias1.pstex_t}
\end{center} \end{figure}

$\displaystyle R[1]=R[1]+R[0]-1=1.8+0.6-1=1.4 $

$\displaystyle A[0]=1$

$ L=\{0,3,5\}$ et $ H=\{1,2,4\}$.







Figure 1.3: Aliasing construction : second step.
\begin{figure}\begin{center}
\input{alias2.pstex_t}
\end{center} \end{figure}

$\displaystyle R[1]=R[1]+R[3]-1=1.0 $

$\displaystyle A[3]=1 \rightarrow L=\{0,1,3,5\},\;H=\{2,4\}. $

Figure 1.4: Aliasing construction : third step.
\begin{figure}\begin{center}
\input{alias3.pstex_t}
\end{center} \end{figure}

$\displaystyle R[2]=R[2]+R[5]-1=0.8$

$\displaystyle A[5]=2$

$ L=\{0,1,2,3,5\}$ et $ H=\{4\}$.







Figure 1.5: Aliasing construction : final step.
\begin{figure}\begin{center}
\input{alias4.pstex_t}
\end{center} \end{figure}

$\displaystyle R[4]=R[4]+R[2]-1=1.0 $

$\displaystyle A[2]=4 $

$ L=\{0,1,2,3,4,5\}$ et $ H=\emptyset$

Figure 1.6: Aliasing construction : end of construction.
\begin{figure}\begin{center}
\input{alias5.pstex_t}
\end{center} \end{figure}



It follows this (non unique) Aliasing construction :




States 0 1 2 3 4 5
Thresholds 0.6 1.0 0.8 0.6 1.0 0.6
Alias 1 / 4 1 / 2



next up previous contents
Next: Perfect Simulation Up: Introduction Previous: Uniformization   Contents
Florent Morata 2002-12-11